No CrossRef data available.
Published online by Cambridge University Press: 09 April 2009
By an arc we mean a nondegenerate simply ordered set which is compact and connected in its order topology. A space X is rigid if the only homeomorphism of X onto itself is the identity map. Examples of rigid totally disconnected compact ordered spaces may be found in [1], [2], and [3]. It is the purpose of this note to prove the existence of an arc such that no two of its subarcs are homeomorphic. The proof makes use of arcs of large cardinality and the technique of inverse limit spaces.