Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T12:29:16.655Z Has data issue: false hasContentIssue false

On the complete integral closure of an integral domain

Published online by Cambridge University Press:  09 April 2009

Robert W. Gilmer Jr
Affiliation:
Florida State University Tallahassee, Florida
William J. Heinzer
Affiliation:
Florida State University Tallahassee, Florida
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider in this paper only commutative rings with identity. When R is considered as a subring of S it will always be assumed that R and S have the same identity. If R is a subring of S an element s of S said to be integral over R if s is the root of a monic polynomial with coefficients in R. Following Krull [8], p. 102, we say s is almost integral over R provided all powers of s belong to a finite R-submodule of S. If R1 is the set of elements of S almost integral over R we say R1 is the complete integral closure of R in S.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1966

References

[1]Bourbaki, N., Elements de Mathematique, Algebre Commutative, XXX, (Hermann, Paris, 1964).Google Scholar
[2]Butts, H. S. and Smith, W. W., ‘On the integral closure of a domain’, submitted for publication.Google Scholar
[3]Cohen, I. S. and Seidenberg, A., ‘Prime ideals and integral dependence’, Bull. Amer. Math. Soc., 52 (1946), 252261.CrossRefGoogle Scholar
[4]Gilmer, R. W. Jr, ‘On overrings of Prüfer domains’, to appear in Journal of Algebra.Google Scholar
[5]Gilmer, R. W. Jr, ‘The pseudo-radical of a commutative ring’, to appear in Pac. J. Math.Google Scholar
[6]Gilmer, R. W. Jr, and Ohm, J., ‘Integral domains with quotient overrings’, Math. Ann., 153 (1964), 97103.CrossRefGoogle Scholar
[7]Gilmer, R. W. Jr, and Ohm, J., ‘Primary ideals and valuation ideals’, Trans. Amer. Math. Soc., 117 (1965), 237250.CrossRefGoogle Scholar
[8]Krull, W., Idealtheorie, (Chelsea, New York, 1948).CrossRefGoogle Scholar
[9]Krull, W., ‘Allgemeine Bewertungstheorie’, J. reine angew. Math., 167 (1931), 160196.Google Scholar
[10]Krull, W., ‘Beiträge zur Arithmetik kommutativer Integritätsbereiche II’, Math. Z., 41 (1936), 665679.CrossRefGoogle Scholar
[11]Nagata, M., Local Rings (Interscience, New York, 1962).Google Scholar
[12]Nakayama, T., ‘On Krull's conjecture concerning completely integrally closed integrity domains I’, Proc. Imp. Acad. Tokyo 18 (1942), 185187; II, Proc. Imp. Acad. Tokyo 18 (1942), 233–236; III, Proc. Imp. Acad. Tokyo (1946), 249–250.Google Scholar
[13]Ohm, J., ‘Some counterexamples related to integral closure in D[[x]]’, Trans. Amer. Math. Soc., 122 (1966), 321333.Google Scholar
[14]van der Waerden, B. L., Modern Algebra, II (Ungar, New York, 1950).Google Scholar
[15]Zariski, O. and Samuel, P., Commutative Algebra, I (Van Nostrand, Princeton, 1958).Google Scholar
[16]Zariski, O. and Samuel, P., Commutative Algebra, II (Van Nostrand, Princeton, 1960).CrossRefGoogle Scholar