Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T09:19:27.805Z Has data issue: false hasContentIssue false

On sets of integers not containing arithmetic progressions of prescribed length

Published online by Cambridge University Press:  09 April 2009

H. L. Abbott
Affiliation:
University of Alberta, Edmonton, Alberta
A. C. Liu
Affiliation:
University of Alberta, Edmonton, Alberta
J. Riddell
Affiliation:
University of Victoria, Victoria, British Columbia
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let m, n and l be positive integers satisfying mnl ≦ 3. Denote by h(m, n, l) the largest integer with the property that from every n-subset of {1,2, …, m} one can select h(m, n, l) integers no l of which are in arithmetic progression. Let f(n, l) = h(n, n, l) and let g(n, l) = minmh(m, n, l). In what follows, by a P1-free set we shall mean a set of integers not containing an arithmetic progression of length l.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1974

References

[1]Abbott, H. L. and Liu, A. C., ‘On partitioning integers into progression free sets’, J. Comb. T. (to appear).Google Scholar
[2]Behrena, F. A., ‘On sets of integers which contain no three terms in arithmetical progression’, Proc. Nat. Acad. Sci. U. S. A. 32 (1946), 331332.CrossRefGoogle Scholar
[3]Erdös, P., ‘Some recent advances and current problems in number theory’, Lectures on Modern Mathematics, Vol. 3, Saaty, T. L., ed. (Wiley, New York, 1963).Google Scholar
[4]Lorentz, G. G., ‘On a problem of additive number theory’, Proc. Amer. Math. Soc. 5 (1954), 838841.CrossRefGoogle Scholar
[5]Moser, L., ‘On non-averaging sets of integers’, Can. J. Math. 5 (1953), 245252.CrossRefGoogle Scholar
[6]Rankin, R. A., ‘Sets of integers containing not more than a given number of terms in arithmetical progression’, Proc. Roy. Soc. Edin, A, 65 (1962) 332344.Google Scholar
[7]Riddell, J., ‘On sets of integers containing no l terms in Arithmetic progression’, Neiuw Arch. voor Wisk. (3), 17 (1969), 204209.Google Scholar
[8]Roth, K. F., ‘Sur quelques ensembles d'entiers’, C. R. Acad. Sci. Paris. 234 (1952), 388390.Google Scholar
[9]Salem, R. and Spencer, D. C., ‘On sets of integers which contain no three terms in arithmetical progression’, Proc. Nat. Acad. Sci. U. S.A. 28 (1942), 561563.CrossRefGoogle ScholarPubMed
[10]Szemerédi, E., ‘On sets of integers containing no four terms in arithmetic progression’, Acta. Math. Acad. Sci. Hung. 20 (1969), 89104.CrossRefGoogle Scholar
[11]Wagstaff, S. S. Jr, ‘On sequences of integers with no 4, or no 5 numbers in arithmetical progression’, Math. Comp. 21 (1967), 695699.CrossRefGoogle Scholar