Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T15:04:57.855Z Has data issue: false hasContentIssue false

On primitive abundant numbers

Published online by Cambridge University Press:  09 April 2009

Graeme L. Cohen
Affiliation:
School of Mathematical Sciences The New South Wales Institute of TechnologyP. O. Box 123, Broadway, NSW 2007, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let n be a natural with largest component sd. We prove that if xσ(n) = yn + z (x, y, z given positive integers), n is not primitive (y/x)-abundant and n/s is not (y/x)-perfect, then n < 4(z + ½)3/27y (if z ≥ 175). All solutions are tabled for the equation xσ(n) - yn when x = 1, y ≥ 2, 1 ≤ z ≤ 210, and n is not primitive y-abundant. We also prove that if n is primitive (y/x)-abundant, then s3d < (yn/2)2. A number of results are proved concerning the range of σ(n)/n when n is primitive αabundant, for any real number α > 1. For example, then α(n/n < α + min {½ 3 α e-5a/9 /2) and σ(n)/n < α /1.6α/log n. All primitive abundant numbers n with α(n)/ ≥ 2.05 are listed.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1983

References

Cataneo, P. (1951), ‘Sui numeri quasiperfetti’, Boll. Un. Mat. Ital. (3) 6, 5962.Google Scholar
Dickson, L. E. (1913a), ‘Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors’, Amer. J. Math. 35, 413422.CrossRefGoogle Scholar
Dickson, L. E. (1913b), ‘Even abundant numbers’, Amer. J. Math. 35, 423426.CrossRefGoogle Scholar
Dickson, L. E. (1966), History of the theory of numbers, Vol. 1 (Chelsea, New York).Google Scholar
Ferrier, A. (1950), Table errata 176, M.T.A.C. 4, 222.Google Scholar
Herzog, Fritz (1980), Table errata 571, Math. Comp. 34, 652.Google Scholar
Pomerance, C. (1975), ‘On the congrunces α(n) ≡ a(mod n) and n ≡ a(mod ϕ(n))’, Acta Arith 26, 265272.CrossRefGoogle Scholar
Robbins, Neville (1980), ‘A class of solutions of the equation σ(n) = 2n + t’, Fibonacci Quart. 18, 137147.Google Scholar
Rosser, J. B. and Schoenfeld, L. (1962), ‘Approximate formulas for some functions of prime numbers’, Illinois J. Math. 6, 6494.CrossRefGoogle Scholar
Schoenfeld, L. (1976), ‘Sharper bounds for the Chebyshev functions ϕ(x) and ψ(x). II’, Math. Comp. 30, 337360.Google Scholar
Somayajulu, B. S. K. R. (1977), ‘The sequence σ(n)/ϕ(n)’, Math. Student 45, 5254.Google Scholar