Published online by Cambridge University Press: 09 April 2009
Let n be a natural with largest component sd. We prove that if xσ(n) = yn + z (x, y, z given positive integers), n is not primitive (y/x)-abundant and n/s is not (y/x)-perfect, then n < 4(z + ½)3/27y (if z ≥ 175). All solutions are tabled for the equation xσ(n) - yn when x = 1, y ≥ 2, 1 ≤ z ≤ 210, and n is not primitive y-abundant. We also prove that if n is primitive (y/x)-abundant, then s3d < (yn/2)2. A number of results are proved concerning the range of σ(n)/n when n is primitive αabundant, for any real number α > 1. For example, then α(n/n < α + min {½ 3 α e-5a/9 /2) and σ(n)/n < α /1.6α/log n. All primitive abundant numbers n with α(n)/ ≥ 2.05 are listed.