Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-31T23:57:34.647Z Has data issue: false hasContentIssue false

On measurable multifunctions with stochastic domain

Published online by Cambridge University Press:  09 April 2009

Nikolaos S. Papageorgiou
Affiliation:
Department of Mathematics, University of CaliforniaDavis, California 95616, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we prove several random fixed point theorems for multifunctions with a stochastic domain. Then those techniques are used to establish the existence of solutions for random differential inclusions. A useful tool in this process is a stochastic version of the Tietze extension theorems that we prove. Finally we present a stochastic version of the Riesz representation theorem for Hilbert spaces.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1988

References

[1]Assad, N., ‘Fixed point theorems for set valued transformations on compact sets’, Boll. Un. Mat. Ital. 8 (1973), 17.Google Scholar
[2]Bensoussan, A., Filtrage optimal des systèmes linéaires (Dunod, Paris, 1971).Google Scholar
[3]Bocsan, Gh., Constantin, Gh. and Radu, V., ‘On the random extension property at a separable metric space’, Sem. de Teoria Prob. si Appl. 53 (1980), Univ. Timisoara (Romania) pp. 15.Google Scholar
[4]Castaing, C. and Valadier, M., Convex analysis and measurable multifunctions (Lecture Notes in Math., vol. 580, Berlin, 1977).Google Scholar
[5]Cuong, P. V., ‘Random versions of Kakutani-Ky Fan's fixed point theorems’, J. Math. Anal. Appl. 82 (1981), 473490.Google Scholar
[6]Delahaye, J. P. and Denel, J., ‘The continuities of the point-to-set maps, definitions and equivalences’, Math. Programming Study 10 (1979), 812.CrossRefGoogle Scholar
[7]Dugundji, J., Topology (Allyn and Bacon, Boston, Mass., 1966).Google Scholar
[8]Engl, H. W., ‘Some random fixed point theorems for strict contractions and nonexpansive mappings’, Nonlinear Anal. 2 (1978), 619626.CrossRefGoogle Scholar
[9]Engl, H. W., ‘A general stochastic fixed point theorem for continuous random operators with stochastic domains’, J. Math. Anal. Appl. 66 (1978), 220231.Google Scholar
[10]Engl, H. W., ‘Random fixed point theorems’, Nonlinear equations in abstract spaces, Lakshimikantham, V. (ed.), (Academic Press, 1980, pp. 6780.)Google Scholar
[11]Engl, H. W., ‘Random fixed point theorems for multivalued mappings’, Pacific J. Math 76 (1978), 351360.Google Scholar
[12]Himmelberg, C., ‘Measurable relations’, Fund. Math. 87 (1975), 5372.CrossRefGoogle Scholar
[13]Himmelberg, C., Porter, J. and Van Vleck, F., ‘Fixed point theorems for condensing multifunctions’, Proc. Amer. Math. Soc. 23 (1969), 635641.Google Scholar
[14]Itoh, S., ‘Random fixed point theorems with an application to random differential equations in Banach spaces’, J. Math. Anal. Appl. 67 (1979), 261272.Google Scholar
[15]Jdanok, T., ‘Operateurs et fonctionelles aleatories dans les champs measurables’, Seminaire d'analyse convexe, exposé 2, Montpellier (1983), 135.Google Scholar
[16]Kisielewicz, M., ‘Multivalued differential equations in separable Banach spaces’, J. Optim. Theory Appl. 37 (1982), 231249.Google Scholar
[17]Klein, E. and Thompson, A., Theory of correspondences (Wiley, New York, 1984).Google Scholar
[18]Lakshmikantham, V. and Leela, S., Nonlinear differential equations in abstract spaces (Pergamon Press, London, 1981).Google Scholar
[19]Nowak, A., ‘Random fixed point of multifunctions’, Prace Nauk. Uniw. Slask. Katowic. 11 (1981), 3641.Google Scholar
[20]Nowak, A., ‘Applications of random fixed point theorems in the theory of generalized random differential equations’, Bull. Acad. Pol. Sci. Ser. Math. 34 (1986), 487494.Google Scholar
[21]Papageorgiou, N. S., ‘Random fixed point theorems for measurable multifunctions in Banach spaces’, Proc. Amer. Math. Soc. 97 (1986), 507514.CrossRefGoogle Scholar
[22]Saint-Beuve, M. F., ‘On the extension of Von Neumann-Aumann's theorem’, J. Funct. Anal. 17 (1974), 112129.Google Scholar
[23]Schäl, M., ‘A selection theorem for optimization problems’, Arch. Math. 25 (1974), 219224.Google Scholar
[24]Seghal, V. M. and Waters, C., ‘Some random fixed point theorems for considering operators’, Proc. Amer. Math. Soc. 90 (1984), 425429.Google Scholar
[25]Su, Ch. H. and Seghal, V. M., ‘Some fixed point theorems for condensing multifunctions in locally convex spaces’, Proc. Amer. Math. Soc. 50 (1975), 150154.CrossRefGoogle Scholar
[26]Tsukada, M., ‘Convergence of best approximations in smooth Banach spaces’, J. Approximation Theory 40 (1984), 301309.CrossRefGoogle Scholar