Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T19:54:43.439Z Has data issue: false hasContentIssue false

On Koenigs' ratios for iterates of real functions

Published online by Cambridge University Press:  09 April 2009

E. Seneta
Affiliation:
Australian National University Canberra, ACT
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In a recent note, M. Kuczama [5] has obtained a general result concerning real solutions φ(x) on the interval 0 ≦ x < a ≦∞ of the Schröder functional equation providing the known real function satisfies the following (quite weak) conditions: f(x) is continuous and strictly increasing in ([0 a);(0) = 0 and 0 <f(x) <x for x ∈ (0, a); limx→0+ {f(x)/x} = s; and f(x)/x is monotonic in (0, a).

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1969

References

[1]Heathcote, C.R.,Seneta, E. and D. Vere-Jones, ‘A refinement of two theorems in the theory of branching processes’, Teor. Veroiat. Primenen., 12, (1967), 341346.Google Scholar
[2]Kneser, H., ‘Reelle analytische Lösungen der Gleichungφ(φ(x)) = e x und verwandter Funktionalgleichungen’, J. reine angew. Math., 187, (1950), 5667.Google Scholar
[3]Kuczma, M., ‘On the Schröder equation’, Rozprawy Mat., 34, (1963).Google Scholar
[4]Kuczma, M., ‘A survey of the theory of functional equations’, Publikacije Elektrohnickog Fakultela, Univerzitet u Beogradu, Serija: Matematika i Fizika, No. 130, (1964).Google Scholar
[5]Kuczma, M., ‘Note on Schröder's functional equation’, J. Aust. Math. Soc., 4, (1964), 149151.CrossRefGoogle Scholar
[6]Lundberg, A., ‘On iterated functions with asymptotic conditions at a fixpoint’, Arkiv för Matematik, 5, (1963), 193206.CrossRefGoogle Scholar
[7]Picard, É., Leçons sur Quelques È;quations Fonctionelles.(Gauthier-Villars, Paris,1950).Google Scholar
[8]Szekeres, G., ‘Regular iteration of real and complex functions’, Acta Math. 100, (1958), 203258.Google Scholar