Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-30T19:42:32.580Z Has data issue: false hasContentIssue false

On Hermite-Fejér interpolation with equidistant nodes

Published online by Cambridge University Press:  09 April 2009

G. B. Baker
Affiliation:
Towers, Perrin, Forster and Crosby 356 Collins Street Melbourne Victoria 3000, Australia
T. M. Mills
Affiliation:
Bendigo College of Advanced Education P. O. Box 199, Bendigo Victoria 3550, Australia
P. Vértesi
Affiliation:
Mathematical Institute Hungarian Academy of SciencesP. O. Box 127 Budapest 1364, Hungary
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper deals with Hermite-Fejér interpolation of functions defined on a semi-infinite interval but the nodes are equally spaced. It is shown that, under certain conditions, the interpolation process has poor approximation properties.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1990

References

[1]Berman, D. L., ‘Divergence of the Hermite-Fejér interpolation process’ (Russian), Uspehi Mat. Nauk 13 (80) (1958), no. 3, 143148.Google Scholar
[2]Fejér, L., ‘Über Interpolation’, Göttinger Nachrichten 1 (1916), 6691.Google Scholar
[3]Gonska, H. H. and Knoop, H. B., ‘On Hermite-Fejér interpolation: a bibliography (1914–1987)’, Studia Sci. Math. Hungar, to appear.Google Scholar
[4]Gradshteyn, I. S. and Ryzhik, I. M., Tables of integrals, series, and products, (Corrected and enlarged edition, Academic Press New York, 1980).Google Scholar
[5]Kuipers, L. and Niederreiter, H., Uniform distribution of sequences (Wiley, New York, 1974).Google Scholar
[6]Mills, T. M., ‘Some techniques in approximation theory’, Math. Sci. 5 (1980), 105120.Google Scholar
[7]Runck, Paul Otto, ‘Sur la convergence des polynomes d'interpolation de Lagrange et d' Hermite aux noeuds equidistantsC. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 245 (1957), 12111213.Google Scholar
[8]Szegö, G., ‘Über gewisse Interpolationspolynome, die zu den Jacobischen und Laguerreschen Abszissen gehören’, Math. Z. 35 (1932), 579602.CrossRefGoogle Scholar
[9]Szegö, Gábor, Orthogonal polynomials (4th ed., Colloq. Publ. 23, Amer. Math. Soc., Providence, R. I., 1975).Google Scholar