No CrossRef data available.
Article contents
ON COMPACT HOMOGENEOUS $\mathbf{\text{G}_{2(2)}}$-MANIFOLDS
Part of:
Global differential geometry
Published online by Cambridge University Press: 04 September 2019
Abstract
We prove that among all compact homogeneous spaces for an effective transitive action of a Lie group whose Levi subgroup has no compact simple factors, the seven-dimensional flat torus is the only one that admits an invariant torsion-free $\text{G}_{2(2)}$-structure.
MSC classification
- Type
- Research Article
- Information
- Copyright
- © 2019 Australian Mathematical Publishing Association Inc.
Footnotes
Communicated by M. Murray
Wolfgang Globke is supported by the Austrian Science Fund FWF grant I 3248.
References
Baues, O., Globke, W. and Zeghib, A., ‘Isometry Lie algebras of indefinite homogeneous spaces of finite volume’, Proc. Lond. Math. Soc.
119(4) (2019), 1115–1148.Google Scholar
Besse, A. L., Einstein Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 10 (Springer, Berlin, 1987).CrossRefGoogle Scholar
Bonan, E., ‘Sur les variétés Riemanniennes à groupe d’holonomie G2 ou Spin(7)’, C. R. Math. Acad. Sci. Paris
262 (1966), 127–129.Google Scholar
Fino, A. and Luján, I., ‘Torsion-free G2(2)
∗ -structures with full holonomy on nilmanifolds’, Adv. Geom.
15(3) (2015), 381–392.CrossRefGoogle Scholar
Globke, W. and Nikolayevsky, Y., ‘Compact pseudo-Riemannian homogeneous Einstein manifolds in low dimension’, Differential Geom. Appl.
54(Part B) (2017), 475–489.Google Scholar
Kath, I., ‘Nilpotent metric Lie algebras of small dimension’, J. Lie Theory
17 (2007), 41–61.Google Scholar
Kath, I., ‘Indefinite symmetric spaces with G2(2) -structure’, J. Lond. Math. Soc.
87(2) (2013), 853–876.CrossRefGoogle Scholar
Lê, H. V. and Munir, M., ‘Classification of compact homogeneous spaces with invariant G2 -structures’, Adv. Geom.
12(2) (2012), 303–328.CrossRefGoogle Scholar
Leistner, T., Nurowski, P. and Sagerschnig, K., ‘New relations between G2 -geometries in dimensions 5 and 7’, Int. J. Math.
28(13) (2017), 1750094.Google Scholar