Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T14:19:37.954Z Has data issue: false hasContentIssue false

On cardinality of sumsets

Published online by Cambridge University Press:  09 April 2009

M. Z. Garaev
Affiliation:
Instituto de Mathemáticas UNAM Campus MoreliaAp. Postal 61-3 (Xangari) CP 58089, Morelia, Michoacán México e-mail: [email protected]
Ka-Lam Kueh
Affiliation:
Institute of MathematicsAcademia Sinica Taipei 11529 NankangTaiwan e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this article we study some special problems of the additive number theory connected with an estimate of cardinality of a sum of two sets, which can be convex as well as non-convex sequences.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2005

References

[1]Deshouillers, J.-M., ‘Un probléme binaire en théorie additive’, Acta Arith. 25 (1974), 393403.CrossRefGoogle Scholar
[2]Elekes, G., Nathanson, M. B. and Ruzsa, I. Z., ‘Convexity and sumsets’, J. Number Theory 83 (2000), 194201.CrossRefGoogle Scholar
[3]Garaev, M. Z., ‘On lower bounds for the L 1-norm of exponential sums’, Math. Notes 68 (2000), 713720.CrossRefGoogle Scholar
[4]Garaev, M. Z. and Kueh, Ka-Lam, ‘L 1-norms of exponential sums and the corresponding additive problem’, Z. Anal. Anwendungen 20 (2001), 9991006.CrossRefGoogle Scholar
[5]Gritsenko, S. A., ‘Three additive problems’, Russian Acad. Sci. Izv. Math. 41 (1993), 447464.Google Scholar
[6]Hegyvári, N., ‘On consecutive sums in sequences’, Acta Math. Acad. Sci. Hungar. 48 (1986), 193200.CrossRefGoogle Scholar
[7]Jarnik, V., ‘Über die Gitterpunkte auf konvexen Curven’, Math. Z. 24 (1926), 500518.CrossRefGoogle Scholar
[8]Konyagin, S. V., ‘An additive problem with fractional powers’, Math. Notes 73 (2003), 594597.CrossRefGoogle Scholar
[9]Landau, E., ‘Über die Einteilung der postiven ganzen zahlen in vier Klassen nach der Mindestzahl der zu ihrer additiven zusammen-setzung erforderlichen Quadrate’, Arch. Math. Phys. 13 (1908), 305312.Google Scholar