Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T08:51:57.018Z Has data issue: false hasContentIssue false

On almost-N-continuous functions

Published online by Cambridge University Press:  09 April 2009

Ch. Konstadilaki-Savvopoulou
Affiliation:
Department of Mathematics, Faculty of Sciences, Aristotle University of Thessaloniki, 54006 Thessaloniki, Greece
I. L. Reilly
Affiliation:
Department of Mathematics and Statistics, University of Auckland, Auckland, New Zealand
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recently the class of almost-N-continuous functions between topological spaces has been defined. This paper continues the study of such functions, especially from the point of view of changing the topology on the codomain.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1995

References

[1]Carnahan, D., ‘Locally nearly compact spaces’, Boll. Un. Mat. Ital. 4 (1972), 146153.Google Scholar
[2]Corson, H. H. and Michael, E., ‘Metrizability of certain countable unions’, Illinois J. Math. 8 (1964), 351360.Google Scholar
[3]Dugundji, J., Topology (Allyn and Bacon, Needham Heights, 1966).Google Scholar
[4]Fuller, R. V., ‘Relations among continuous and various non-continuous functions’, Pac. J. Math. 25 (1968), 495509.CrossRefGoogle Scholar
[5]Gauld, D. B., ‘c-continuous functions and cocompact topologies’, Kyungpook Math. J. 18 (1978), 151157.Google Scholar
[6]Gauld, D. B., ‘Topologies related to notions of near continuity’, Kyungpook Math. J. 21 (1981), 195204.Google Scholar
[7]Gauld, D. B., Mrsević, M., Reilly, I. L. and Vamanamurthy, M. K., ‘Continuity properties of functions’, Colloquia Mathematica Societatis János Bolyai 41 (1983), 311322.Google Scholar
[8]Gentry, K. R. and Hoyle, H. B. III, ‘c-continuous functions’, Yokohama Math. J. 18 (1970), 7176.Google Scholar
[9]Hwang, Suk Geun, ‘Almost-c-continuous functions’, J. Korean Math. Soc. 14 (1978), 229234.Google Scholar
[10]Janković, D. S., ‘On topological properties defined by semiregularization topologies’, Boll. Un. Mat. Ital. 62–A (1983), 373380.Google Scholar
[11]Kuratowski, K., Topology I (Academic Press, 1966).Google Scholar
[12]Lorrain, F., ‘Notes on topological spaces with minimum neighbourhoods’, Amer. Math. Monthly 76 (1969), 616627.Google Scholar
[13]Long, P. E. and Hamlett, T. R., ‘H-continuous functions’, Boll. Un. Mat. Ital. (4) 11 (1975), 552558.Google Scholar
[14]Long, P. E. and Herrington, L. L., ‘Functions with strongly-closed graphs’, Boll. Un. Mat. Ital. (4) 12 (1975), 381384.Google Scholar
[15]Malghan, S. R. and Hanchinamani, V. V., ‘N-continuous functions’, Ann. Soc. Sci. Bruxelles, T, 98 II–III (1984), 6979.Google Scholar
[16]Malghan, S. R., ‘Almost-N-continuous functions’, J. Karnatak Univ.-Science 31 (1986), 93101.Google Scholar
[17]Mrsević, M. and Reilly, I. L., ‘On N-continuity and coN-closed topologies’, Ricerche di Matematica 36 (1987), 3343.Google Scholar
[18]Mršević, M., Reilly, I. L. and Vamanamurthy, M. K., ‘On semi-regularization topologies’, J. Austral. Math. Soc. (Series A) 38, (1985), 4054.Google Scholar
[19]Noiri, T., ‘Remarks on locally nearly compact spaces’, Boll. Un. Mat. Ital. (4) 10 (1974), 3643.Google Scholar
[20]Noiri, T., ‘Properties of almost-c continuous functions’, J. Korean Math. Soc. 15 (1979), 109115.Google Scholar
[21]Porter, J. R. and Thomas, J. D., ‘On H-closed and minimal Hausdorff spaces’, Trans. Amer. Math. Soc. 138 (1969), 159170.Google Scholar
[22]Singal, M. K. and Arya, S. P., ‘On almost-regular spaces’, Glasnik Mat. 4 24 (1969), 8999.Google Scholar
[23]Singal, M. K. and Mathur, Asha, ‘A note on mildly compact spaces’, Kyungpook Math. J. 19 (1979), 165168.Google Scholar
[24]Singal, M. K. and Singal, Asha Rani, ‘Almost continuous mappings’, Yokohama Math. J. 16 (1968), 6373.Google Scholar
[25]Singh, I. T. and Prasad, R., ‘Almost-c-continuous functions’, Indian J. Math. 27 (1985), 165168.Google Scholar