Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-19T11:56:51.917Z Has data issue: false hasContentIssue false

On a Converse to the Tscgebotarev density theorem

Published online by Cambridge University Press:  09 April 2009

C. E. Van Der Ploeg
Affiliation:
Mathematics DivisonUniversity of SussexFalmer, Brighton United Kingdom
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using an elementary counting procedure on biquadratic polynomials over Zp it is shown that the probability distribution of odd, unramified rational primes according to decomposition type in a fixed dihedral numberfield is identical to the probility of separable quartic polynomials (mod p) whose roots generate numberfields with normal closure having Galois group isomorphic to D4, as p → ∞. This verifies a conjecture about a converse to the Tschebotarev density theorem. Further evidence in support of this conjecture is provided in quadratic and coubic numberfields.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1988

References

Hasse, H. (1930), Bericht über neuere untersuchungen und probleme aus der theorie der Algebraischen Zahlkörper, Teil II §24 (Leipzig und Berlin).Google Scholar
Lang, S. (1970), Algebraic number theory (Addison-Wesley).Google Scholar
Lagarias, J. C. and Odlyzko, A. M. (1977), ‘Effective versions of the Chebotarev density theorem’ Algebraic Number Fields, ed. Frölich, A., (Academic Press), pp. 409464.Google Scholar
Mann, H. B. (1955), Introduction to algebraic number theory (Ohio State University Press).Google Scholar
Skolem, Th. (1941), ‘Die Anzahl der Wurzeln der Kongruenz x 3 + ax + b ≡ 0 (mod p) für die verschiedenen Paare Paare a, b’, Norske. Vid. Selsk. Forh. (Trondheim) 14, 161–4.Google Scholar
van der Ploeg, C. E. (1987), ‘Duality in non-normal quartic fields’, Amer. Math. Monthly 94 (03).Google Scholar