No CrossRef data available.
Published online by Cambridge University Press: 01 June 2008
It is well known that higher-order linear elliptic equations with measurable coefficients and higher-order nonlinear elliptic equations with analytic coefficients can admit unbounded solutions, unlike their second-order counterparts. In this work we introduce the concept of approximate truncates for functions in higher-order Sobolev spaces and prove that if a solution of a higher-order linear elliptic equation has an approximate truncate somewhere then it is bounded there.