Published online by Cambridge University Press: 09 April 2009
We exhibit a sequence (un) which is not uniformly distributed modulo one even though for each fixed integer k ≥ 2 the sequence (kun) is u.d. (mod 1). Within the set of all such sequences, we characterize those with a well-behaved asymptotic distribution function. We exhibit a sequence (un) which is u.d. (mod 1) even though no subsequence of the form (ukn + j) is u.d. (mod 1) for any k ≥ 2. We prove that, if the subsequences (ukn) are u.d. (mod 1) for all squarefree k which are products of primes in a fixed set P, then (un) is u.d. (mod I) if the sum of the reciprocals of the primes in P diverges. We show that this result is the best possible of its type.