Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-27T21:44:22.287Z Has data issue: false hasContentIssue false

A note on the Lévy-Khinchin representation of negative definite functions on Hilbert spaces

Published online by Cambridge University Press:  09 April 2009

Gunter Ritter
Affiliation:
Fakultät für Mathematik und InformatikUniversität PassauD-8390 Passau, West Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study negative definite functions on a Hilbert space and use their properties to give a proof of the Lévy-Khinchin formula for an infinitely divisible probability distribution on .

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1988

References

[1]Araujo, Aloisio and Giné, Evarist, The central limit theorem for real and Banach valued random variables (Wiley, New York, 1980).Google Scholar
[2]Berg, Christian, Christensen, Jens Paul Reus and Ressel, Paul, Harmonic analysis on semi-groups (Springer, New York, Berlin, Heidelberg, Tokyo, 1984).CrossRefGoogle Scholar
[3]Berg, Christian and Forst, Gunnar, Potential theory on locally compact Abelian groups, (Springer, Berlin, Heidelberg, New York, 1975).CrossRefGoogle Scholar
[4]Courrège, Philippe, ‘Générateur infinitésimal d'un semi-groupe de convolution sur Rn, et formule de Lévy-Khinchine’, Bull. Sci. Math. 88 (1964), 330.Google Scholar
[5]Edwards, Robert Edmund, Functional analysis (Holt, New York, 1965).Google Scholar
[6]Gihman, I. I. and Skorohod, A. V., The theory of stochastic processes I (Springer, Berlin, Heidelberg, New York, 1980).Google Scholar
[7]Guichardet, Alain, Symmetric Hilbert spaces and related topics (Lecture Notes in Math., vol. 261 (1972)).CrossRefGoogle Scholar
[8]Hazod, Wilfried, Stetige Faltungshalbgruppen von Wahrscheinlichkeitsmassen und erzeugende Distributionen (Lecture Notes in Math., vol. 595 (1977)).CrossRefGoogle Scholar
[9]Heyer, Herbert, Probability measures on locally compact groups (Springer, Berlin, Heidelberg, New York, 1977).CrossRefGoogle Scholar
[10]Heyer, Herbert, ed., Probability measures on groups VII (Lecture Notes in Math., vol. 1064 (1984)).CrossRefGoogle Scholar
[11]Linde, Werner, Infinitely divisible and stable measures on Banach spaces (Teubner, Leipzig, 1983).Google Scholar
[12]Parthasarathy, K. R., Probability measures on metric spaces (Academic Press, New York, London, Toronto, Sydney, San Francisco, 1967).CrossRefGoogle Scholar
[13]Prokhorov, Yu. V., ‘Convergence of random processes and limit theorems in probability theory’, Theory Probab. Appl. 1 (1956), 157214.CrossRefGoogle Scholar
[14]Skorohod, A. V., Integration in Hilbert space (Springer, Berlin, Heidelberg, New York, 1974).CrossRefGoogle Scholar
[15]Varadhan, S. R. S., ‘Limit theorems for sums of independent random variables with values in a Hilbert space’, Sankh a 24 (1962), 213238.Google Scholar