Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T07:27:23.861Z Has data issue: false hasContentIssue false

A note on annihilator and complemented Banach aigebras

Published online by Cambridge University Press:  09 April 2009

Pak-Ken Wong
Affiliation:
Seton Hall UniversitySouth Orange, New Jersey 08079, U. S. A.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The purpose of this paper is to generalize some results in a recent paper by Tomiuk and the author ([11]).

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1974

References

[1]Alexander, F. E., ‘On complemented and annihilator algebras’, Glasgow J. Math. 10 (1969), 3845.CrossRefGoogle Scholar
[2]Arens, R. F., ‘The adjoint of a bilinear operation’, Proc. Amer. Math. Soc. 2 (1951), 839848.CrossRefGoogle Scholar
[3]Barnes, B. A., ‘Subalgebras of modular annihilator algebras’, Proc. Camb. Phil. Soc. 66 (1969), 512.CrossRefGoogle Scholar
[4]Barnes, B. A., ‘Algebras with the spectral expansion property’, Illinois J. Math. 11 (1967), 284290.CrossRefGoogle Scholar
[5]Barnes, B. A., ‘Banach algebras which are ideals in a Banach algebra’, Pacific J. Math. 38 (1971), 17.CrossRefGoogle Scholar
[6]Dunford, N. and Schwartz, J., Linear operators. I General Theory, Pure and Appl. Math., vol. 7, (Interscience, New York, 1958).Google Scholar
[7]McCharen, D. A., ‘A characterization of dual B*-algebra’, Proc. Amer. Math. Soc. 37 (1973), 84.Google Scholar
[8]Ogasawara, T. and Yoshinaga, K., ‘Weakly completely continuous Banach *-algebras’, J. Sci. Hiroshina Uni. Ser. A18 (1954), 1536.Google Scholar
[9]Rickart, C. E., ‘General theory of Banach algebras’, University Series in Higher Math. (Van Nostrand, Princeton, N. J., 1960.)Google Scholar
[10]Tomiuk, B. J., ‘Structure theory of complemented Banach algebras’, Canad. J. Math. 14 (1962), 651659.CrossRefGoogle Scholar
[11]Tomiuk, B. J. and Wong, P. K., ‘Annihilator and complemented Banach *-algebras’, J. Austral. Math. Soc. 18 (1971), 4766.Google Scholar
[12]Wong, P. K., ‘Continuous complementors on B*-algebras’, Pacific J. Math. 33 (1970), 255260.CrossRefGoogle Scholar
[13]Wong, P. K., ‘Modular annihilator A'-algebras’, Pacific J. Math. 37 (1971), 825834.CrossRefGoogle Scholar
[14]Wong, P. K., ‘On the Arens product and commutative Banach algebras’, Proc. Amer. Math. Soc. 37 (1973), 111113.CrossRefGoogle Scholar
[15]Wong, P. K., ‘On the Arens products and certain Banach algebras’, Trans. Amer. Math. Soc. (to appear).Google Scholar
[16]Wong, P. K., ‘Quasi-complementors and complementors on certain Banach algebras’, (Submitted).Google Scholar
[17]Yood, B., ‘Ideals in topological rings’, Canad. J. Math. 16 (1964), 2845.CrossRefGoogle Scholar