Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T08:45:25.248Z Has data issue: false hasContentIssue false

Norm inequalities relating one-sided singular integrals and the one-sided maximal function

Published online by Cambridge University Press:  09 April 2009

M. S. Riveros
Affiliation:
FaMAF Universidad Nacional de Córdoba(5000) CórdobaArgentina e-mail: [email protected]
A. de la Torre
Affiliation:
Análisis Matemático Facultad de Ciencias Universidad de Málaga(29071) MálagaSpain e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we prove that if a weight w satisfies the condition, then the Lp(w) norm of a one-sided singular integral is bounded by the Lp(w) norm of the one-sided Hardy-Littlewood maximal function, for 1 < p < q < ∞.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2000

References

[AFM]Aimar, H., Forzani, L. and Reyes, F. J. Martín, ‘On weighted inequalities for one-sided singular integrals’, Proc. Amer. Math. Soc. 125 (1997), 20572064.CrossRefGoogle Scholar
[FeSt]Fefferman, C. and Stein, E., ‘Some maximal inequalities’, Amer. J. Math. 93 (1971), 107115.CrossRefGoogle Scholar
[Mu]Muckenhoupt, B., ‘Norm inequalities relating the Hilbert transform to the Hardy-Littlewood maximal function’, in: Functional analysis and approximation (Oberwolfach 1980), Internat. Ser. Number. Math. 60 (Birkhauser, Basel-Boston, Mass., 1981) pp. 219231.CrossRefGoogle Scholar
[MPT]Reyes, F. J. Martín, Pick, L. and de la Torre, A., ‘A +, condition’, Can. J. Math 45 (1993), 12311244.CrossRefGoogle Scholar
[S1]Sawyer, E., ‘Weighted inequalities for the one-sided Hardy-Littlewood maximal function’, Trans. Amer. Math. Soc. 297 (1986), 5361.CrossRefGoogle Scholar
[S2]Sawyer, E., ‘Norm inequalities relating singular integrals and maximal functions’, Studia Math. 75 (1983), 251263.CrossRefGoogle Scholar