Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-18T05:27:46.206Z Has data issue: false hasContentIssue false

NON-POINTED EXACTNESS, RADICALS, CLOSURE OPERATORS

Published online by Cambridge University Press:  07 June 2013

M. GRANDIS
Affiliation:
Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35, 16146-Genova, Italy email [email protected]
G. JANELIDZE
Affiliation:
Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, South Africa email [email protected]
L. MÁRKI*
Affiliation:
Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, H-1364 Budapest, Pf. 127, Hungary
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper it is shown how nonpointed exactness provides a framework which allows a simple categorical treatment of the basics of Kurosh–Amitsur radical theory in the nonpointed case. This is made possible by a new approach to semi-exactness, in the sense of the first author, using adjoint functors. This framework also reveals how categorical closure operators arise as radical theories.

Type
Research Article
Copyright
Copyright ©2013 Australian Mathematical Publishing Association Inc. 

References

Arkhangel’skii, A. V. and Wiegandt, R., ‘Connectednesses and disconnectednesses in topology’, Gen. Top. Appl. 5 (1975), 933.CrossRefGoogle Scholar
Dickson, S. E., ‘A torsion theory for abelian categories’, Trans. Amer. Math. Soc. 121 (1966), 223235.CrossRefGoogle Scholar
Dikranjan, D. and Tholen, W., Categorical Structure of Closure Operators (Kluwer Academic Publications, Dordrecht, 1995).CrossRefGoogle Scholar
Ehresmann, C., ‘Cohomologie à valeurs dans une catégorie dominée, Extraits du Colloque de Topologie, Bruxelles, 1964’, in: Oeuvres Complètes et Commentées, Partie III-2 (ed. Ehresmann, C.) (Amiens, 1980), 531590.Google Scholar
Fried, E. and Wiegandt, R., ‘Connectednesses and disconnectednesses of graphs’, Algebra Universalis 5 (1975), 411428.CrossRefGoogle Scholar
Fried, E. and Wiegandt, R., ‘Abstract relational structures, II (Torsion theory)’, Algebra Universalis 15 (1982), 2239.CrossRefGoogle Scholar
Gardner, B. J., ‘Some radical constructions for associative rings’, J. Aust. Math. Soc. 18 (1974), 442446.CrossRefGoogle Scholar
Gardner, B. J., ‘Morphic orthogonality and radicals in categories’, in: Rings and Radicals (Proc. Conf. Shijiazhuang, 1994), Pitman Research Notes Mathematical Series, 346 (Longman, Harlow, 1996), 178206.Google Scholar
Gardner, B. J. and Wiegandt, R., Radical Theory of Rings, Pure and Applied Mathematics, 261 (Marcel Dekker, New York, 2004).Google Scholar
Grandis, M., ‘A categorical approach to exactness in algebraic topology’, in: Atti del V Convegno Nazionale di Topologia, Lecce-Otranto 1990, Rend. Circ. Mat. Palermo 29 (1992), 179213.Google Scholar
Grandis, M., ‘On the categorical foundations of homological and homotopical algebra’, Cah. Topol. Géom. Differ. Catég. 33 (1992), 135175.Google Scholar
Grandis, M., Homological Algebra in Strongly Non-Abelian Settings (World Scientific, Hackensack NJ, 2013).CrossRefGoogle Scholar
Higgins, P. J., ‘Groups with multiple operators’, Proc. Lond. Math. Soc. (3) 6 (1956), 366416.CrossRefGoogle Scholar
Janelidze, G. and Márki, L., ‘Kurosh–Amitsur radicals via a weakened Galois connection’, Comm. Algebra 31 (2003), 241258.CrossRefGoogle Scholar
Janelidze, G. and Márki, L., ‘A simplicial approach to factorization systems and Kurosh–Amitsur radicals’, J. Pure Appl. Algebra 213 (2009), 22292237.CrossRefGoogle Scholar
Janelidze, G., Márki, L. and Tholen, W., ‘Semi-abelian categories’, J. Pure Appl. Algebra 168 (2002), 367386.CrossRefGoogle Scholar
Márki, L. and Wiegandt, R., ‘Remarks on radicals in categories’, in: Category Theory. Applications to Algebra, Logic and Topology (Proc. Conf. Gummersbach, 1981), Lecture Notes in Mathematics, 962 (Springer, 1982), 190196.Google Scholar
Wiegandt, R., ‘Radical theory of rings’, Math. Student 51 (1983), 145185.Google Scholar