Article contents
NONORTHOGONAL GEOMETRIC REALIZATIONS OF COXETER GROUPS
Published online by Cambridge University Press: 25 July 2014
Abstract
We define in an axiomatic fashion a Coxeter datum for an arbitrary Coxeter group $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}W$. This Coxeter datum will specify a pair of reflection representations of $W$ in two vector spaces linked only by a bilinear pairing without any integrality or nondegeneracy requirements. These representations are not required to be embeddings of $W$ in the orthogonal group of any vector space, and they give rise to a pair of inter-related root systems generalizing the classical root systems of Coxeter groups. We obtain comparison results between these nonorthogonal root systems and the classical root systems. Further, we study the equivalent of the Tits cone in these nonorthogonal representations.
- Type
- Research Article
- Information
- Copyright
- Copyright © 2014 Australian Mathematical Publishing Association Inc.
References
- 6
- Cited by