Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-14T01:26:47.640Z Has data issue: false hasContentIssue false

Multidimensional Hausdorff operators on the real Hardy space

Published online by Cambridge University Press:  09 April 2009

A. K. Lerner
Affiliation:
Department of MathematicsBar-Ilan University52900 [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a wide family of multivariate Hausdorff operators, the boundedness of an operator from this family i s proved on the real Hardy space. By this we extend and strengthen previous results due to Andersen and Móricz.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2007

References

[1]Andersen, K. F., ‘Boundedness of Hausdorff operators on Lp(n), H1(n), and BMO(n)’, Acta Sci. Math. (Szeged) 69 (2003), 409418.Google Scholar
[2]Brown, G. and Móricz, F., ‘The Hausdorff and the quasi Hausdorff operators on the spaces Lp, 1 £ p < ¥’, Math. Inequal. Appl. 3 (2000), 105115.Google Scholar
[3]Brown, G. and Móricz, F., ‘Multivariate Hausdorff operators on the spaces Lp(R n)’, J. Math. Anal. Appl. 271 (2002), 443454.CrossRefGoogle Scholar
[4]Coifman, R. R. and Weiss, G., ‘Extensions of Hardy spaces and their use in analysis’, Bull. Amer. Math. Soc. 83 (1977), 569645.CrossRefGoogle Scholar
[5]Fefferman, C. and Stein, E. M., ‘Hp spaces of several variables’, Ada Math., 129 (1972), 137193.Google Scholar
[6]Fefferman, R., Some recent developments in Fourier analysis and Hp theory and product domains. II Function spaces and applications Proc. US-Swed. Semin., Lund/Swed., Lect. Notes Math. 1302 (Springer-Verlag, Berlin Heidelberg, 1988) pp. 4451.Google Scholar
[7]Galanopoulos, P. and Siskakis, A. G., ‘Hausdorff matrices and composition operators’, III. J. Math. 45 (2001), 757773.Google Scholar
[8]Georgakis, C., ‘The Hausdorff mean of a Fourier-Stieltjes transform’, Proc. Amer. Math. Soc. 116 (1992), 465471.CrossRefGoogle Scholar
[9]Giang, D. V. and Móricz, F., ‘The Cesaro operator is bounded on the Hardy space H1, Ada Sci. Math. 61 (1995), 535544.Google Scholar
[10]Giang, D. V. and Móricz, F., ‘The two dimensional Cesaro operator is bounded on the multi-parameter Hardy space 1(X )’, Acta Sci. Math. 63 (1997), 279288.Google Scholar
[11]Glazman, I. M. and Lyubich, Yu. I., Finite-Dimensional Linear Analysis: a Systematic Presentation in Problem Form (Nauka, Moscow, 1969 (Russian); English transl.: MIT Press, Cambridge, Massachusets, and London, England, 1974).Google Scholar
[12]Hardy, G. H., Divergent series (Clarendon Press, Oxford, 1949).Google Scholar
[13]Liflyand, E. and Móricz, F., ‘The Hausdorff operator is bounded on the real Hardy space H1()’, Proc. Am. Math. Soc. 128 (2000), 13911396.CrossRefGoogle Scholar
[13]Liflyand, E. and Móricz, F., ‘The multi-parameter Hausdorff operator is bounded on the product Hardy space H11(X )’, Analysis 21 (2001), 107118.CrossRefGoogle Scholar
[15]Miyachi, A., ‘Boundedness of the Cesàro operator in Hardy spaces’, J. Fourier Anal. Appl. 10 (2004), 8392.CrossRefGoogle Scholar
[16]Móricz, F., ‘Multivariate Hausdorff operators on the spaces H1 (n) and BMO(n)’, Analysis Math. 31 (2005), 3141.CrossRefGoogle Scholar
[17]Siskakis, A. G., ‘The Cesàro operator is bounded on H1, Proc. Amer. Math. Soc. 110 (1990), 461462.Google Scholar
[18]Stein, E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals (Princeton Univ. Press, Princeton, NJ, 1993).Google Scholar
[19]Weisz, F., ‘The boundedness of the Hausdorff operator on multi-dimensional Hardy spaces’, Analysis 24 (2004), 183195.CrossRefGoogle Scholar
[20]Widder, D. V., The Laplace transform (Princeton Univ. Press, Princeton, NJ, 1946).Google Scholar