No CrossRef data available.
Published online by Cambridge University Press: 09 April 2009
The problem of determining the class of homomorphic images of a given class of topological semigroups seems to have received little attention in the literature. In [4] Cohen and Krule determined the homomorphic images of a semigroup with zero on an interval. Anderson and Hunter in [1] proved several theorems in this direction. In general, the problem seems to be rather difficult. However, the difficulty is lessened somewhat if all of the homomorphisms of the semigroups in question must be monotone. Phillips, [7], showed that every homomorphism of a standard thread is monotone and hence every homomorphic image of a standard thread is either a standard thread or a point. In this paper a larger class of topological semigroups which admit only monotone homomorphisms is given. These results are used to determine the topological nature of the homomorphic images of certain classes of topological semigroups. These include products of standard threads with min threads, certain semilattices on a two-cell, and compact connected lattices in the plane.