Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T09:04:47.901Z Has data issue: false hasContentIssue false

The modular group algebra problem for groups of order p5

Published online by Cambridge University Press:  09 April 2009

Mohamed A. M. Salim
Affiliation:
Mathematics Dept. Emirates UniversityP. O. Box 17551, Al-Ain, United Arab Emirates
Robert Sandling
Affiliation:
Mathematics Dept. The UniversityManchester M13 9PLEngland e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that p-groups of order p5 are determined by their group algebras over the field of p elements. Many cases have been dealt with in earlier work of ourselves and others. The only case whose details remain to be given here is that of groups of nilpotency class 3 for p odd.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1996

References

[1]Bagiński, C., ‘The isomorphism question for modular group algebras of metacyclic p-groups’, Proc. Amer. Math. Soc. 104 (1988), 3942.Google Scholar
[2]Bagiński, C. and Caranti, A., ‘The modular group algebras of p-groups of maximal class’, Canad. J. Math. 40 (1988), 14221435.CrossRefGoogle Scholar
[3]Brauer, R., ‘Representations of finite groups’, in: Lectures on modern mathematics, vol. 1 (Wiley, New York, 1963) pp. 133175.Google Scholar
[4]Huppert, B., Endliche Gruppen I (Springer, Berlin, 1967).CrossRefGoogle Scholar
[5]James, R., ‘The groups of order p 6 (p an odd prime)’, Math. Comp. 34 (1980), 613637.Google Scholar
[6]Johnson, D. L., Presentations of groups (Cambridge Univ. Press, Cambridge, 1990).Google Scholar
[7]Leary, I. J., The cohomology of certain finite groups (Ph.D. Thesis, Cambridge Univ., 1990).Google Scholar
[8]Leary, I., ‘3-groups are not determined by their integral cohomology rings’, J. Pure Appl. Algebra 103 (1995), 6179.CrossRefGoogle Scholar
[9]Makasikis, A., ‘Sur l'isomorphie d'algèbres de groups sur un champ modulaire’, Bull. Soc. Math. Belg. 28 (1976), 91109.Google Scholar
[10]Mehrvarz, A. A., Topics in the isomorphism of group rings (Ph.D. Thesis, Stirling Univ., 1979).Google Scholar
[11]Michler, G. O., Newman, M. F. and O'Brien, E. A., Modular group algebras (Unpublished Report, Australian National Univ., Canberra, 1987).Google Scholar
[12]Passi, I. B. S., Group rings and their augmentation ideals, Lecture Notes in Math. 715 (Springer, Berlin, 1979).CrossRefGoogle Scholar
[13]Passman, D. S., ‘The group algebras of groups of order p 4 over a modular field’, Michigan Math. J. 12 (1965), 405415.CrossRefGoogle Scholar
[14]Rusin, D. J., ‘The cohomology of the groups of order 32’, Math. Comp. 53 (1989), 359385.CrossRefGoogle Scholar
[15]Salim, M. A. M., The isomorphism problem for the modular group algebras of groups of order p 5 (Ph.D. Thesis, Univ. of Manchester, 1993).Google Scholar
[16]Salim, M. A. M. and Sandling, R., ‘The unit group of the modular small group algebra’, Math. J. Okayama Univ., to appear.Google Scholar
[17]Salim, M. A. M. and Sandling, R., ‘The modular group algebra problem for small p-groups of maximal class’, Canad. J. Math., to appear.Google Scholar
[18]Sandling, R., ‘The isomorphism problem for group rings: a survey’, in: Orders and their applications (Oberwolfach, 1984), Lecture Notes in Math. 1142 (Springer, Berlin, 1985) pp. 256288.CrossRefGoogle Scholar
[19]Sandling, R., ‘The modular group algebra of a central-elementary-by-abelian p-group’, Arch. Math. (Basel) 52 (1989), 2227.CrossRefGoogle Scholar
[20]Sandling, R., ‘The modular group algebra problem for metacyclic p-groups’, Proc. Amer. Math. Soc. 124 (1996), 13471350.CrossRefGoogle Scholar
[21]Wursthorn, M., Die modularen Gruppenringe der Gruppen der Ordnung 26 (Diplomarbeit, Universität Stuttgart, 1990).Google Scholar