Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T06:07:12.297Z Has data issue: false hasContentIssue false

MODULAR DIOPHANTINE INEQUALITIES AND ROTATIONS OF NUMERICAL SEMIGROUPS

Published online by Cambridge University Press:  01 June 2008

M. DELGADO
Affiliation:
Centro de Matemática, Universidade do Porto, Rua do Campo Alegre 687 4169-007 Porto, Portugal (email: [email protected])
J. C. ROSALES*
Affiliation:
Departamento de Álgebra, Universidad de Granada, E-18071 Granada, Spain (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a numerical semigroup S, a positive integer a and a nonzero element m of S, we define a new numerical semigroup R(S,a,m) and call it the (a,m)-rotation of S. In this paper we study the Frobenius number and the singularity degree of R(S,a,m). Moreover, we observe that the rotations of ℕ are precisely the modular numerical semigroups.

Type
Research Article
Copyright
Copyright © 2008 Australian Mathematical Society

Footnotes

The first author gratefully acknowledges support of the FCT through the CMUP. The second author was supported by the project MTM2004-01446 and FEDER founds.

References

[1]Apéry, R., ‘Sur les branches superlinéaires des courbes algébriques’, C. R. Acad. Sci. Paris 222 (1946), 11981200.Google Scholar
[2]Barucci, V., Dobbs, D. E. and Fontana, M., ‘Maximality properties in numerical semigroups and applications to one-dimensional analytically irreducible local domains’, Mem. Amer. Math. Soc. 125 (1997), no. 598.Google Scholar
[3]Ramírez Alfonsín, J. L., The Diophantine Frobenius Problem, Oxford Lectures Series in Mathematics and its Applications, 30 (Oxford University Press, Oxford, 2005).CrossRefGoogle Scholar
[4]Rosales, J. C. and García-Sánchez, P. A., Finitely Generated Commutative Monoids (Nova Science Publishers, New York, 1999).Google Scholar
[5]Rosales, J. C., García-Sánchez, P. A., García-García, J. I. and Urbano-Blanco, J. M., ‘Proportionally modular Diophantine inequalities’, J. Number Theory 103 (2003), 281294.CrossRefGoogle Scholar
[6]Rosales, J. C., García-Sánchez, P. A. and Urbano-Blanco, J. M., ‘Modular Diophantine inequalities and numerical semigroups’, Pacific J. Math. 218 (2005), 379398.CrossRefGoogle Scholar
[7]Selmer, E. S., ‘On a linear diophantine problem of Frobenius’, J. Reine Angew. Math. 293–294 (1977), 117.Google Scholar