Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T12:33:22.573Z Has data issue: false hasContentIssue false

MEAN-VALUE PROPERTY ON MANIFOLDS WITH MINIMAL HOROSPHERES

Published online by Cambridge University Press:  01 April 2008

LEONARD TODJIHOUNDE*
Affiliation:
Institut de Mathematiques et de Sciences Physiques, B.P. 613 Porto-Novo, Republique du Benin (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let (M,g) be a non-compact and complete Riemannian manifold with minimal horospheres and infinite injectivity radius. In this paper we prove that bounded functions on (M,g) satisfying the mean-value property are constant. We thus extend a result of Ranjan and Shah [‘Harmonic manifolds with minimal horospheres’, J. Geom. Anal.12(4) (2002), 683–694] where they proved a similar result for bounded harmonic functions on harmonic manifolds with minimal horospheres.

Type
Research Article
Copyright
Copyright © 2008 Australian Mathematical Society

References

[1]Hansen, W. and Nadirashvili, N., ‘Liouville’s theorem and the restricted mean-value property’, J. Math. Pures Appl. (9) 74(2) (1995), 185198.Google Scholar
[2]Heath, D., ‘Functions possessing the mean value properties’, Proc. Amer. Math. Soc. 41 (1973), 588595.CrossRefGoogle Scholar
[3]El Kadiri, M., ‘Théorème de Liouville et propriété de la moyenne biharmonique restreinte’, C. R. Acad. Sci. Paris, Ser. I 1340 (2005), 563566.CrossRefGoogle Scholar
[4]El Kadiri, M., ‘Liouville theorem and restricted harmonic mean value property on the real line’, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 27 (2003), 8994.Google Scholar
[5]Kim, J. and Wang, M. W., ‘Invariant mean value property and harmonic functions’, Complex Var. Theory Appl. 50(14) (2005), 10491059.Google Scholar
[6]Ranjan, A. and Shah, H., ‘Harmonic manifolds with minimal horospheres’, J. Geom. Anal. 12(4) (2002), 683694.CrossRefGoogle Scholar
[7]Ranjan, A. and Shah, H., ‘Busemann functions in a harmonic manifold’, Geom. Dedicata 101 (2003), 167183.CrossRefGoogle Scholar
[8]Sitaram, A. and Willis, G. A., ‘L p-functions satisfying the mean value property on homogeneous spaces’, J. Aust. Math. Soc. Ser. A 56(3) (1994), 384390.CrossRefGoogle Scholar
[9]Willmore, T. J., ‘Mean value theorems in harmonic spaces’, J. London Math. Soc. 25 (1950), 5457.CrossRefGoogle Scholar
[10]Zucca, F., ‘Strong and weak mean value property on trees’, Int. J. Pure Appl. Math. 6(1) (2003), 3349.Google Scholar