Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T22:22:22.088Z Has data issue: false hasContentIssue false

Maximal subgroups and the Jordan-Hölder Theorem

Published online by Cambridge University Press:  09 April 2009

Julio Lafuente
Affiliation:
Departamento de Matemáticas, Universidad de Zaragoza, 50 009 Zaragoza, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this note we present a general Jordan-Hölder type theorem for modular lattices and apply it to obtain various (old and new) versions of the Jordan-Hölder Theorem for finite groups.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1989

References

[1]Baer, R., ‘Classes of finite groups and their properties’, Illinois J. Math. 1 (1987), 115187.Google Scholar
[2]Baer, R. and Förster, P., Einbettungsrelationen und Formationen endlicher Gruppen, to appear.Google Scholar
[3]Barnes, D. W., ‘On complemented chief factors of finite soluble groups’, Bull. Austral. Math. Soc. 7 (1972), 101104.CrossRefGoogle Scholar
[4]Carter, R. W., Fischer, B. and Hawkes, T. O., ‘Extreme classses of finite soluble groups’, J. Algebra 9 (1968), 285313.CrossRefGoogle Scholar
[5]Förster, P., ‘Projektive Klassen endlicher Gruppen. I’, Math. Z. 186 (1984), 149178.CrossRefGoogle Scholar
[6]Förster, P., ‘A note on primitive groups with small maximal subgroups’, Publ. Sec. Mat. Univ. Autonoma Barcelona 28 (1984), 1928.Google Scholar
[7]Förster, P., ‘Chief factors, crowns, and the generalized Jordan-Hölder Theorem’, Comm. Algebra, to appear.Google Scholar
[8]Förster, P., ‘On primitive groups with regular normal subgroups’, ANU-MSRC Research Report 39–1985, Canberra.Google Scholar
[9]Grätzer, G., General lattice theory (Birkhäuser-Verlag, Basel, 1978).CrossRefGoogle Scholar
[10]Isbell, J. R., ‘Zassenhaus' Theorem supersedes the Jordan-Hölder Theorem’, Adv. in Math. 31 (1979), 101103.CrossRefGoogle Scholar
[11]Kovács, L. G. and Newman, M. F., ‘On the Jordan-Hölder Theorem’, ANU-MSRC Research Report 11, 1987, Canberra.Google Scholar
[12]Lafuente, J., ‘Homomorphs and formations of given derived class’, Math. Proc. Cambridge Philos. Soc. 84 (1978), 437441.CrossRefGoogle Scholar
[13]Lafuente, J., ‘Nonabelian crowns and Schunck classes of finite groups’, Arch. Math. 42 (1984), 3239.CrossRefGoogle Scholar
[14]Lafuente, J., ‘Grupos primitivos con subgrupos maximales pequeños’, Publ. Sec. Mat. Univ. Autonoma Barcelona 29 (1985), 154161.Google Scholar
[15]Neumann, H., Varieties of groups (Springer-Verlag, Berlin, Heidelberg, New York, 1967).CrossRefGoogle Scholar