Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T13:13:12.569Z Has data issue: false hasContentIssue false

MATRIX-VARIATE GAUSS HYPERGEOMETRIC DISTRIBUTION

Published online by Cambridge University Press:  04 March 2012

ARJUN K. GUPTA
Affiliation:
Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403-0221, USA (email: [email protected])
DAYA K. NAGAR*
Affiliation:
Instituto de Matemáticas, Universidad de Antioquia, Calle 67, No. 53–108, Medellín, Colombia (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we propose a matrix-variate generalization of the Gauss hypergeometric distribution and study several of its properties. We also derive probability density functions of the product of two independent random matrices when one of them is Gauss hypergeometric. These densities are expressed in terms of Appell’s first hypergeometric function F1 and Humbert’s confluent hypergeometric function Φ1of matrix arguments.

Type
Research Article
Copyright
Copyright © 2013 Australian Mathematical Publishing Association Inc.

References

[1]Anderson, T. W., An Introduction to Multivariate Statistical Analysis, 3rd edn, Wiley Series in Probability and Statistics (John Wiley & Sons, Hoboken, NJ, 2003).Google Scholar
[2]Armero, C. and Bayarri, M. J., ‘Prior assessments for predictions in queues’, The Statistician 43(1) (1994), 139153.CrossRefGoogle Scholar
[3]Cardeño, L., Nagar, D. K. and Sánchez, L. E., ‘Beta type 3 distribution and its multivariate generalization’, Tamsui Oxf. J. Math. Sci. 21(2) (2005), 225241.Google Scholar
[4]Chikuse, Y., ‘Distributions of some matrix variates and latent roots in multivariate Behrens–Fisher discriminant analysis’, Ann. Statist. 9(2) (1981), 401407.CrossRefGoogle Scholar
[5]Constantine, A. G., ‘Some noncentral distribution problems in multivariate analysis’, Ann. Math. Statist. 34 (1963), 12701285.CrossRefGoogle Scholar
[6]Davis, A. W., ‘Invariant polynomials with two matrix arguments extending the zonal polynomials: applications to multivariate distribution theory’, Ann. Inst. Statist. Math. 31(3) (1979), 465485.CrossRefGoogle Scholar
[7]Davis, A. W., ‘Invariant polynomials with two matrix arguments, extending the zonal polynomials’, in: Multivariate Analysis, Vol. V (Proc. Fifth Internat. Sympos., Univ. Pittsburgh, Pittsburgh, PA, 1978) (North-Holland, Amsterdam, 1980), pp. 287299.Google Scholar
[8]Gupta, A. K. and Nagar, D. K., Matrix Variate Distributions, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 104 (Chapman & Hall/CRC, Boca Raton, FL, 2000).Google Scholar
[9]Gupta, A. K. and Nagar, D. K., ‘Properties of matrix variate beta type 3 distribution’, Int. J. Math. Math. Sci. 2009 (2009), p. 18, Art. ID 308518.CrossRefGoogle Scholar
[10]Herz, C. S., ‘Bessel functions of matrix argument’, Ann. of Math. (2) 61 (1955), 474523.CrossRefGoogle Scholar
[11]James, A. T., ‘Distributions of matrix variates and latent roots derived from normal samples’, Ann. Math. Statist. 35 (1964), 475501.CrossRefGoogle Scholar
[12]Johnson, N. L., Kotz, S. and Balakrishnan, N., Continuous Univariate Distributions, Vol. 2, 2nd edn, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics (John Wiley & Sons, New York, 1995).Google Scholar
[13]Libby, D. L. and Novic, M. R., ‘Multivariate generalized beta distributions with applications to utility assessment’, J. Educ. Statist. 35 (1982), 271294.CrossRefGoogle Scholar
[14]Luke, Y. L., The Special Functions and their Approximations, Vol. I, Mathematics in Science and Engineering, 53 (Academic Press, New York, 1969).Google Scholar
[15]Nadarajah, S., ‘Sums, products and ratios of generalized beta variables’, Statist. Papers 47(1) (2006), 6990.CrossRefGoogle Scholar
[16]Nagar, D. K. and Gupta, A. K., ‘Matrix-variate Kummer-beta distribution’, J. Aust. Math. Soc. 73(1) (2002), 1125.CrossRefGoogle Scholar
[17]Nagar, D. K. and Rada-Mora, E. A., ‘Properties of multivariate beta distributions’, Far East J. Theor. Stat. 24(1) (2008), 7394.Google Scholar
[18]Saxena, R. K., Sethi, P. L. and Gupta, O. P., ‘Appell functions of matrix arguments’, Indian J. Pure Appl. Math. 28(3) (1997), 371380.Google Scholar
[19]Srivastava, M. S. and Khatri, C. G., An Introduction to Multivariate Statistics (North-Holland, New York, 1979).Google Scholar