Published online by Cambridge University Press: 05 November 2010
A ℂ-linear map θ (not necessarily bounded) between two Hilbert C*-modules is said to be ‘orthogonality preserving’ if 〈θ(x),θ(y)〉=0 whenever 〈x,y〉=0. We prove that if θ is an orthogonality preserving map from a full Hilbert C0(Ω)-module E into another Hilbert C0(Ω) -module F that satisfies a weaker notion of C0 (Ω) -linearity (called ‘localness’), then θ is bounded and there exists ϕ∈Cb (Ω)+ such that 〈θ(x),θ(y)〉=ϕ⋅〈x,y〉 for all x,y∈E.
The authors were supported by a Hong Kong RGC Research Grant (2160255), the National Natural Science Foundation of China (10771106), and a Taiwan NSC grant (NSC96-2115-M-110-004-MY3).