We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We survey the legacy of L. G. Kovács in linear group theory, with a particular focus on classification questions.
Bácskai, Z., ‘Finite irreducible monomial groups of small prime degree’, PhD Thesis, Australian National University, 1999.Google Scholar
[2]
Blichfeldt, H. F., Finite Collineation Groups (University of Chicago Press, Chicago, 1917).Google Scholar
[3]
Bryant, R. M., Kovács, L. G. and Robinson, G. R., ‘Transitive permutation groups and irreducible linear groups’, Q. J. Math. Oxford Ser. (2)46(184) (1995), 385–407.CrossRefGoogle Scholar
[4]
Conlon, S. B., ‘p-groups with an abelian maximal subgroup and cyclic center’, J. Aust. Math. Soc. Ser. A22(2) (1976), 221–233.Google Scholar
[5]
Coutts, H. J., Quick, M. and Roney-Dougal, C., ‘The primitive permutation groups of degree less than 4096’, Comm. Algebra39(10) (2011), 3526–3546.Google Scholar
[6]
Detinko, A. S., ‘A new GAP group library for irreducible maximal solvable subgroups of prime degree classical groups’, J. Math. Sci. (N.Y.)108(6) (2002), 942–950.Google Scholar
Detinko, A. S. and Flannery, D. L., ‘Classification of nilpotent primitive linear groups over finite fields’, Glasg. Math. J.46(3) (2004), 585–594.Google Scholar
[9]
Dixon, J. D. and Kovács, L. G., ‘Generating finite nilpotent irreducible linear groups’, Q. J. Math. Oxford Ser. (2)44(173) (1993), 1–15.CrossRefGoogle Scholar
[10]
Dixon, J. D. and Mortimer, B., ‘The primitive permutation groups of degree less than 1000’, Math. Proc. Cambridge Philos. Soc.103(2) (1988), 213–238.Google Scholar
[11]
Dixon, J. D. and Zalesskii, A. E., ‘Finite primitive linear groups of prime degree’, J. Lond. Math. Soc. (2)57(1) (1998), 126–134.Google Scholar
[12]
Dixon, J. D. and Zalesskii, A. E., ‘Finite imprimitive linear groups of prime degree’, J. Algebra276(1) (2004), 340–370.Google Scholar
[13]
Dixon, J. D. and Zalesskii, A. E., ‘Corrigendum: “Finite primitive linear groups of prime degree” [J. Lond. Math. Soc. (2) 57 (1998), no. 1, 126–134]’, J. Lond. Math. Soc. (2)77(3) (2008), 808–812.Google Scholar
[14]
Eick, B. and Höfling, B., ‘The solvable primitive permutation groups of degree at most 6560’, LMS J. Comput. Math.6 (2003), 29–39; (electronic).CrossRefGoogle Scholar
[15]
Feit, W., ‘The current situation in the theory of finite simple groups’, in: Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1 (Gauthier-Villars, Paris, 1971), 55–93.Google Scholar
[16]
Feit, W., ‘On finite linear groups in dimension at most 10’, in: Proceedings of the Conference on Finite Groups (Univ. Utah, Park City, Utah, 1975) (Academic Press, New York, 1976), 397–407.Google Scholar
[17]
Flannery, D. L., The Finite Irreducible Linear 2-groups of Degree 4, Memoirs of the American Mathematical Society (American Mathematical Society, Providence, RI, 1997).Google Scholar
[18]
Flannery, D. L., ‘The finite irreducible monomial linear groups of degree 4’, J. Algebra218(2) (1999), 436–469.Google Scholar
[19]
Flannery, D. L. and O’Brien, E. A., ‘Linear groups of small degree over finite fields’, Internat. J. Algebra Comput.15(3) (2005), 467–502.Google Scholar
[20]
Höfling, B., ‘Finite irreducible imprimitive nonmonomial complex linear groups of degree 4’, J. Algebra236(2) (2001), 419–470.Google Scholar
[21]
Kovács, L. G., ‘Some representations of special linear groups’, in: The Arcata Conference on Representations of Finite Groups (Arcata, CA, 1986), Proceedings of Symposia in Pure Mathematics, 47, Part 2 (American Mathematical Society, Providence, RI, 1987), 207–218.Google Scholar
[22]
Kovács, L. G., ‘On tensor induction of group representations’, J. Aust. Math. Soc. Ser. A49(3) (1990), 486–501.Google Scholar
[23]
Kovács, L. G., ‘Semigroup algebras of the full matrix semigroup over a finite field’, Proc. Amer. Math. Soc.116(4) (1992), 911–919.Google Scholar
[24]
Kovács, L. G. and Robinson, G. R., ‘Generating finite completely reducible linear groups’, Proc. Amer. Math. Soc.112(2) (1991), 357–364.CrossRefGoogle Scholar
[25]
Kovács, L. G. and Sim, H.-S., ‘Generating finite soluble groups’, Indag. Math. (N.S.)2(2) (1991), 229–232.Google Scholar
[26]
Kovács, L. G. and Sim, H.-S., ‘Nilpotent metacyclic irreducible linear groups of odd order’, Arch. Math. (Basel)65(4) (1995), 281–288.Google Scholar
[27]
Robinson, G. R., ‘The work of L.G. Kovács on representation theory’, J. Aus. Math. Soc., to appear. Published online (16 June 2015).Google Scholar
[28]
Short, M. W., The Primitive Soluble Permutation Groups of Degree Less than 256, Lecture Notes in Mathematics, 1519 (Springer, Berlin, 1992).Google Scholar
Suprunenko, D. A., Matrix Groups, Translations of Mathematical Monographs, Vol. 45 (American Mathematical Society, Providence, RI, 1976).CrossRefGoogle Scholar
[31]
Suprunenko, D. A., Permutation Groups (Navyka i Technika, Minsk, 1996), (in Russian).Google Scholar
[32]
Zalesskii, A. E., ‘Linear groups’, Russian Math. Surveys36(5) (1981), 63–128.Google Scholar
[33]
Zalesskii, A. E., ‘Linear groups’, Itogi Nauki i Tekhniki, Seriya Algebra,Topologiya, Geometriya, vol. 21 (1983), 135–182; J. Soviet Math.31(3) (1985), 2974–3004 (English transl.).Google Scholar
[34]
Zalesskii, A. E., ‘Linear groups’, in: Algebra IV, Encyclopaedia Math. Sci., Vol. 37 (Springer, Berlin, 1993), 97–196.Google Scholar