Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T12:21:08.742Z Has data issue: false hasContentIssue false

THE KERNELS AND CONTINUITY IDEALS OF HOMOMORPHISMS FROM 𝒞0(Ω)

Published online by Cambridge University Press:  19 January 2010

HUNG LE PHAM*
Affiliation:
Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give a description of the continuity ideals and the kernels of homomorphisms from the algebras of continuous functions on locally compact spaces into Banach algebras. We also construct families of prime ideals satisfying a certain intriguing property in the algebras of continuous functions.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2010

References

[1]Bade, W. G. and Curtis, P. C. Jr, ‘Homomorphisms of commutative Banach algebras’, Amer. J. Math. 82 (1960), 589–608.CrossRefGoogle Scholar
[2]Dales, H. G., ‘A discontinuous homomorphism from C(X)’, Amer. J. Math. 101 (1979), 647–734.CrossRefGoogle Scholar
[3]Dales, H. G., Banach Algebras and Automatic Continuity, London Mathematical Society Monographs Series, 24 (Clarendon Press, Oxford, 2000).Google Scholar
[4]Dales, H. G. and Woodin, W. H., An Introduction to Independence for Analysts, London Mathematical Society Lecture Note Series, 115 (Cambridge University Press, Cambridge, 1987).CrossRefGoogle Scholar
[5]Dales, H. G. and Woodin, W. H., Super-Real Fields: Totally Ordered Fields with Additional Structure, London Mathematical Society Monographs Series, 14 (Clarendon Press, Oxford, 1996).CrossRefGoogle Scholar
[6]Esterle, J. R., ‘Seminormes sur C(K)’, Proc. London Math. Soc. (3) 36 (1978), 27–45.CrossRefGoogle Scholar
[7]Esterle, J. R., ‘Sur l’existence d’un homomorphisme discontinu de C(K)’, Proc. London Math. Soc. (3) 36 (1978), 46–58.CrossRefGoogle Scholar
[8]Esterle, J. R., ‘Injection de semi-groupes divisibles dans des algùbres de convolution et construction d’homomorphismes discontinus de C(K)’, Proc. London Math. Soc. (3) 36 (1978), 59–85.CrossRefGoogle Scholar
[9]Esterle, J. R., ‘Homomorphismes discontinus des algĂšbres de Banach commutatives sĂ©parables’, Studia Math. 66 (1979), 119–141.CrossRefGoogle Scholar
[10]Esterle, J. R., ‘Universal properties of some commutative radical Banach algebras’, J. Reine Angew. Math. 321 (1981), 1–24.Google Scholar
[11]Gillman, L. and Jerison, M., Rings of Continuous Functions, University Series in Higher Mathematics (D. Van Nostrand, Princeton, NJ, 1960).CrossRefGoogle Scholar
[12]Johnson, B. E., ‘Norming C(U) and related algebras’, Trans. Amer. Math. Soc. 220 (1976), 37–58.Google Scholar
[13]Kaplansky, I., ‘Normed algebras’, Duke Math. J. 16 (1949), 399–418.CrossRefGoogle Scholar
[14]Kendig, K., Elementary Algebraic Geometry, Graduate Texts in Mathematics, 44 (Springer, New York, 1977).CrossRefGoogle Scholar
[15]Pham, H. L., ‘The kernels of radical homomorphisms and intersections of prime ideals’, Trans. Amer. Math. Soc. 360 (2008), 1057–1088.CrossRefGoogle Scholar
[16]Pham, H. L., ‘Uncountable families of prime z-ideals in 𝒞0(ℝ)’, Bull. London Math. Soc. 41 (2009), 354–366.CrossRefGoogle Scholar
[17]Sinclair, A. M., ‘Homomorphisms from C 0(R)’, J. London Math. Soc. (2) 11 (1975), 165–174.CrossRefGoogle Scholar
[18]Sinclair, A. M., Automatic Continuity of Linear Operators, London Mathematical Society Lecture Note Series, 21 (Cambridge University Press, Cambridge, 1976).CrossRefGoogle Scholar