We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
A Bochner-Martinelli-Koppelman type integral formula with weight factors is derived on complete intersection submanifolds of domains of Cn.
[1]Aizenberg, I. and Yuzhakov, A., Integral representations and residues in multidimensional complex analysis., Trans. Math. Monographs 58, Amer. Math. Soc., Providence, R. I., 1983.CrossRefGoogle Scholar
[2]
[2]Andersson, M. and Berndtsson, B., Henkin-Ramirez formulas with weight factors, Ann. Inst. Fourier Grenoble 32 (3) (1982), 91–110.CrossRefGoogle Scholar
[3]
[3]Berndtsson, B., A formula for interpolation and division in Cn, Math. Ann. 263 (1983), 399–418.Google Scholar
[4]
[4]Berndtsson, B., Integral formulas on projective space and the Radon transform of Gindikin-Henkin-Polyakov, Pub. Mat. 32 (1988), 7–41.Google Scholar
[5]
[5]Charpentier, P., Solutions minimales de l'equation u = f dans la boule et dans le polydisque, Ann. Inst. Fourier 30 (4) (1980), 121–153.CrossRefGoogle Scholar
[6]
[6]Dautov, S. V. and Henkin, G. M., Zeros of holomorphic functions of finite order and weighted estimates for solutions of the -equation, Math. USSR–Sb. 107 (1979), 163–174.Google Scholar
[7]
[7]Hatziafratis, T., Integral representation formulas on analytic varities, Pacific J. Math. 123 (1986), 71–91.Google Scholar
[8]
[8]Hatziafratis, T., An explicit Koppleman type integral formula on analytic varieties, Michigan Math. J. 3 (1986) 335–341.Google Scholar
[9]
[9]Henkin, G. M. and Leiterer, J., Theory of functions on complex manifolds, (Birkhäuser, 1984).Google Scholar
[10]
[10]Henkin, G. M. and Leiterer, J., Andreotti-Grauert theory by integral formulas, (Birkhäuser, 1988).Google Scholar
[11]
[11]Hörmander, L., An introduction to complex analysis in several variables, (North-Holland, k1973).Google Scholar
[12]
[12]Ovrelid, N., Integral representation formulas and Lp-estimates for the -equation, Math. Scand. 29 (1971), 137–160.CrossRefGoogle Scholar
[13]
[13]Range, R. M., Holomorphic functions and integral representations in several complex variables, (Springer Verlag, 1986).CrossRefGoogle Scholar
[14]
[14]Skoda, H., (Valerus au bord pour les solutions se l'opérateur d”et caractérisation des zéros des fonctions de la classe de Nevanhinna), Bull. Soc. Math. France104 (1976), 225–299.CrossRefGoogle Scholar