Published online by Cambridge University Press: 09 April 2009
Let u be a solution of the heat equation which can be written as the difference of two non-negative solutions, and let v be a non-negative solution. A study is made of the behaviour of u(x, t)/v(x, t) as t → 0+. The methods are based on the Gauss-Weierstrass integral representation of solutions on Rn × ]0, a[ and results on the relative differentiation of measures, which are employed in a novel way to obtain several domination, non-negativity, uniqueness and representation theorems.