Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-08T17:36:46.912Z Has data issue: false hasContentIssue false

Infinitary lattice and Riesz properties of pseudoeffect algebras and po-groups

Published online by Cambridge University Press:  09 April 2009

Anatolij Dvurečenskij
Affiliation:
Mathematical InsituteSlovak Academy of SciencesŠtef´nikova 49, SK - 814 73 Bratislava Slovakia, e-mail: [email protected] [email protected]
Thomas Vetterlein
Affiliation:
Mathematical InsituteSlovak Academy of SciencesŠtef´nikova 49, SK - 814 73 Bratislava Slovakia, e-mail: [email protected] [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Pseudoeffect (PE-) algebras generalize effect algebras by no longer being necessarily commutative. They are in certain cases representable as the unit interval of a unital po-group, for instance if they fulfil a certain Riesz property.

Several infinitary lattice properties and the countable Riesz interpolation property are studied for PE-algebras on the one hand and for po-groups on the other hand. We establish the exact relationships between the various conditions that are taken into account, and in particular, we examine how properties of a PE-algebra are related to the analogous properties of a representing po-group.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2003

References

[1]Ando, T., ‘Problem of infimum in the positive cone’, in: Geometric inequalities and applications (eds. Rassias, T. M. and Srivastava, H. M.) (Kluwer, Dordrecht, 1999) pp. 112.Google Scholar
[2]Birkhoff, G., Lattice theory, Colloquium Publications 25, 3rd Edition (Amer. Math. Soc., Providence, 1995).Google Scholar
[3]Dvurečenskij, A., ‘Pseudo-MV algebras are intervals in ℓ-groups’, J. Aust. Math. Soc. 72 (2002), 427445.CrossRefGoogle Scholar
[4]Dvurečenskij, A. and Pulmannová, S., New trends in quantum structures (Kluwer, Dordrecht, 2000).CrossRefGoogle Scholar
[5]Dvurečenskij, A. and Vetterlein, T., ‘Pseudeffect algebras. I. Basic properties’, Internat. J. Theoret. Phys. 40 (2001), 685701.CrossRefGoogle Scholar
[6]Dvurečenskij, A. and Vetterlein, T., ‘Pseudeffect algebras. II. Group representations’, Internat. J. Theoret. Phys. 40 (2001), 703726.CrossRefGoogle Scholar
[7]Dvurečenskij, A. and Vetterlein, T., ‘Congruences and states on pseudo-effect algebras’, Found. Phys. Letters 14 (2001), 425446.CrossRefGoogle Scholar
[8]Dvurečenskij, A. and Vetterlein, T., ‘On pseudoeffect algebras which can be covered by pseudo MV-algebras’, Demonstratio Math. 36 (2003), 261282.Google Scholar
[9]Dvurečenskij, A. and Vetterlein, T., ‘Archimedeanness and the McNeille completion of pseudoeffect algebras and po-groups’, Algebra Universalis, to appear.Google Scholar
[10]Foulis, D. J. and Bennett, M. K., ‘Effect algebras and unsharp quantum logics’, Found. Phys. 24 (1994), 13251346.CrossRefGoogle Scholar
[11]Fuchs, L., Partially ordered algebraic systems (Pergamon Press, Oxford, 1963).Google Scholar
[12]Fuchs, L., ‘Riesz groups’, Annali della Scuola Norm. Sup. Pisa, III. Ser. 19 (1965), 134.Google Scholar
[13]Georgescu, G. and Iorgulescu, A., ‘Pseudo-MV algebras’, Mult.-Valued Log. 6 (2001), 95135.Google Scholar
[14]Goodearl, K. R., Partially ordered abelian groups with interpolation, Mathematical Surveys and Monographs 20 (Amer. Math. Soc., Providence, 1986).Google Scholar
[15]Jakubik, J., ‘Conditionally orthogonally complete ℓ-groups’, Math. Nachr. 65 (1975), 153162.CrossRefGoogle Scholar
[16]Jakubik, J., ‘On archimedean MV-algebras’, Czechoslovak Math. J. 48 (1998), 575582.CrossRefGoogle Scholar
[17]Mundici, D., ‘Interpretation of AF C*-algebras in Lukasiewicz sentential calculus’, J. Funct. Anal. 65 (1986), 1563.CrossRefGoogle Scholar
[18]Pedersen, G. K., Analysis now (Springer, New York, 1989).CrossRefGoogle Scholar