Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T08:19:07.228Z Has data issue: false hasContentIssue false

Independance algebrique des derivees d'une periode du module de Carlitz

Published online by Cambridge University Press:  09 April 2009

Laurent Denis
Affiliation:
Université des Sciences et Technologies de LilleUFR de Mathématiques 59655 Villeneuve d'AsqFrance e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove here that the p - 1 first derivatives of the fundamental period of the Carliz module are algebraically independent. For that purpose we will show to use Mahler's method in this situtaion.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2000

References

[B1]Becker, P. G., ‘Algebraic independence of the values of vertain series by Mahler's method’, Monatsh. Math. 4 (1992), 183198.CrossRefGoogle Scholar
[B2]Becker, P. G., ‘Transcendence measures for the values of generalized Mahler functions in arbitrary characteristic’, Pubn. Math. Debrecen 45 (1994), 269282.CrossRefGoogle Scholar
[B]Brownawell, D., ‘Linear independence and divided derivatives of a Drinfeld module I’, in Proceedings of Schinzel Conference, Zakopane, Poland (Walter de Gruyter, Berlin, 1998) to appear.Google Scholar
[BD]Brownawell, D. and Denis, L., ‘Linear independence and hyperderivatives on Drinfeld modules II’, Proc. Amer. Math.. Soc., to appear.Google Scholar
[C]Carlitz, L., ‘On certain functions connected with polynomials in a Galois field’, Duke Math. J. 1 (1935), 137168.CrossRefGoogle Scholar
[D1]Denis, L., ‘Dérivées d'un module de Drinfeld et transcendance’, Duke Math. J. 80 (1995), 113.CrossRefGoogle Scholar
[D2]Denis, L., ‘Indépendance algébrique en caractéristique deux’, J. Number Theory 66 (1997), 183200.CrossRefGoogle Scholar
[D3]Denis, L., ‘Indépendance algébrique de différents π’, C. R. Acad. Sci. Paris 327 (1998), 711714.CrossRefGoogle Scholar
[N]Nishioka, K., Mahler functions and transcendence, Lecture Notes in Math. 1631 (Springer, Berlin, 1987).Google Scholar
[P]Philippon, P., ‘cirtères pour I'indépendance algébrique dans les anneaux Diophantiens’, C. R.. Acad. Sci. Paris 315 (1992), 511515.Google Scholar