Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T09:04:14.088Z Has data issue: false hasContentIssue false

Incompressible surfaces and the topology of 3-dimensional manifolds

Published online by Cambridge University Press:  09 April 2009

Iain R. Aitchison
Affiliation:
Mathematics Department, University of Melbourne, Parkville, Victoria, Australia, 3052
J. Hyam Rubinstein
Affiliation:
Mathematics Department, University of Melbourne, Parkville, Victoria, Australia, 3052
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Existence and properties of incompressible surfaces in 3-dimensional manifolds are surveyed. Some conjectures of Waldhausen and Thurston concerning such surfaces are stated. An outline is given of the proof that such surfaces can be pulled back by non-zero degree maps between 3-manifolds. The effect of surgery on immersed, incompressible surfaces and on hierarchies is discussed. A characterisation is given of the immersed, incompressible surfaces previously studied by Hass and Scott, which arise naturally with cubings of non-positive curvature.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1993

References

[1]Aitchison, I. R., Lumsden, E. and Rubinstein, J. H., ‘Cusp structure of alternating links’, Invent. Math. 109 (1992), 473494.CrossRefGoogle Scholar
[2]Aitchison, I. R. and Rubinstein, J. H., ‘Geodesic surfaces in knot complements’, preprint, University of Melbourne, 1990.Google Scholar
[3]Aitchison, I. R. and Rubinstein, J. H., ‘An introduction to polyhedral metrics of non-positive curvature on 3-manifolds’, in: Geometry of Low-Dimensional Manifolds: 2 (eds. Donaldson, S. K. and Thomas, C. B.), London Math. Soc. Lecture Notes 151 (Cambridge University Press, Cambridge, 1990) pp. 127161.Google Scholar
[4]Aitchison, I. R. and Rubinstein, J. H., ‘Canonical surgery on alternating link diagrams’, in: Knots 90 (ed. Kawauchi, A.) (de Gruyter, Berlin, 1992) pp. 543558.Google Scholar
[5]Aitchison, I. R. and Rubinstein, J. H., ‘Combinatorial cubings, cusps and the dodecahedral knots’, in: Topology 90 (eds. Apanasov, , Neumann, , Reid, and Siebenmann, ) (de Gruyter, Berlin, 1992) pp. 1726.Google Scholar
[6]Culler, M. and Shalen, P., ‘Varieties of group representations and splittings of 3-manifolds’, Ann. of Math. 117 (1983), 109146.CrossRefGoogle Scholar
[7]Epstein, D., ‘Periodic flows on three-manifolds’, Ann. of Math. 95 (1972), 6682.CrossRefGoogle Scholar
[8]Freedman, M., Hass, J. and Scott, P., ‘Least area incompressible surfaces in 3-manifolds’, Invent. Math. 71 (1983), 609642.Google Scholar
[9]Gabai, D., ‘Homotopy hyperbolic 3-manifolds are virtually hyperbolic’, preprint, 1992.Google Scholar
[10]Gordon, C. and Luecke, J., ‘Knots are determined by their complements’, J. Amer. Math. Soc. 2 (1989), 371415.Google Scholar
[11]Gromov, M., ‘Hyperbolic groups’, in: Essays in Group Theory (ed. Gersten, S.), MSRI publications 8 (Springer, Berlin, 1987) pp. 75264.Google Scholar
[12]Haken, W., ‘Theorie der Normal Flächen’, Acta Math. 105 (1961), 245375.CrossRefGoogle Scholar
[13]Haken, W., ‘Über das Homöomorphieproblem der 3-Mannigfaltigkeiten I’, Math. Z. 80 (1962), 89120.CrossRefGoogle Scholar
[14]Haken, W., ‘Some results on surfaces in 3-manifolds’, in: Studies in Modern Topology (Math. Assoc. Amer., Washington D.C., 1968) pp. 3498.Google Scholar
[15]Hass, J. and Scott, P., ‘Homotopy equivalence and homeomorphism of 3-manifolds’, Topology 31 (1992), 493517.CrossRefGoogle Scholar
[16]Hatcher, A., ‘On the boundary curves of incompressible surfaces’, Pacific J. Math. 99 (1982), 373377.Google Scholar
[17]Hemion, G., ‘On the classification of homeomorphisms of 2-manifolds and the classification of 3-manifolds’, Acta Math. 142 (1979), 123155.CrossRefGoogle Scholar
[18]Hempel, J., 3-Manifolds, Annals of Math. Studies 86 (Princeton University Press, Princeton, 1976).Google Scholar
[19]Hempel, J., ‘Homology of coverings’, Pacific J. Math. 112 (1984), 83113.CrossRefGoogle Scholar
[20]Hempel, J., ‘Residual finiteness for 3-manifolds’, in: Combinatorial group theory and topology, volume 111 of Annals of Math. Studies (Princeton University Press, Princeton, 1987) pp. 379396.CrossRefGoogle Scholar
[21]Jaco, W., Lectures on three-manifold topology, Conf. Board of Math. Sci. 43 (American Math. Society, Providence, 1980).CrossRefGoogle Scholar
[22]Jaco, W. and Rubinstein, J. H., ‘PL minimal surfaces in 3-manifolds’, J. Differential Geom. 27 (1988), 493524.CrossRefGoogle Scholar
[23]Jaco, W. and Shalen, P., Seifert Fibered Spaces in 3-Manifolds, Mem. Amer. Math. Soc. 220 (1980).Google Scholar
[24]Johannson, K., Homotopy Equivalences of 3-manifolds with Boundary, Lecture Notes in Mathematics 761 (Springer-Verlag, Berlin, 1979).CrossRefGoogle Scholar
[25]Kneser, H., ‘Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten’, Jahresber. Deutsch Math.-Verein 38 (1929), 248260.Google Scholar
[26]Lickorish, W. B. R., ‘A representation of orientable combinatorial 3-manifolds’, Ann. of Math. 76 (1962), 531540.Google Scholar
[27]Long, D., ‘Immersions and embeddings of totally geodesic surfaces’, Bull. London Math. Soc. 19 (1987), 481484.CrossRefGoogle Scholar
[28]Markov, A. A., ‘Unsolvability of the problem of homeomorphy’, in: Proceedings of the International Congress of Mathematicians 1958 (ed. Todd, J. A.) (Cambridge University Press, Cambridge, 1960) pp. 300306.Google Scholar
[29]Millson, J., ‘On the first Betti number of a constant negatively curved manifold’, Ann. of Math. 104 (1976), 235247.Google Scholar
[30]Milnor, J., ‘A unique factorisation theorem for 3-manifolds’, Amer. J. Math. 84 (1962), 17.CrossRefGoogle Scholar
[31]Moise, E., ‘Affine structures in 3-manifolds V. the triangulation theorem and hauptvermutung’, Ann. of Math. 56 (1952), 96114.CrossRefGoogle Scholar
[32]Mostow, G., ‘Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms’, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 53104.CrossRefGoogle Scholar
[33]Orlik, P., Seifert Manifolds, Lecture Notes in Mathematics 291 (Springer-Verlag, Berlin, 1972).CrossRefGoogle Scholar
[34]Papakyriakopoulos, C., ‘On Dehn's Lemma and the asphericity of knots’, Ann. of Math. 66 (1957), 126.CrossRefGoogle Scholar
[35]Papakyriakopoulos, C., ‘On solid tori’, Proc. London Math. Soc. 7 (1957), 281299.Google Scholar
[36]Rubinstein, J. H. and Swarup, G. A., ‘On Scott's core theorem’, Bull. London Math. Soc. 22 (1990), 495498.CrossRefGoogle Scholar
[37]Schubert, H., ‘Bestimmung der Primfaktorzerlegung von Verkettungen’, Math. Zeit. 76 (1961), 116148.CrossRefGoogle Scholar
[38]Scott, P., ‘Compact submanifolds of 3-manifolds’, J. London Math. Soc. (2) 7 (1973), 246250.Google Scholar
[39]Scott, P., ‘The geometries of 3-manifolds’, Bull. London Math. Soc. 15 (1983), 401487.CrossRefGoogle Scholar
[40]Seifert, H., ‘Topologie dreidimensionalen gefaserter Räume’, Acta Math. 60 (1933), 147238.Google Scholar
[41]Skinner, A., The word problem in the fundamental groups of a class of three dimensional manifolds (Ph.D. Thesis, University of Melbourne, 1991).Google Scholar
[42]Stallings, J., ‘On the loop theorem’, Ann. of Math. 72 (1960), 1219.CrossRefGoogle Scholar
[43]Stallings, J., ‘On fibering certain 3-manifolds’, in: Topology of 3-Manifolds (ed. Fort, M.) (Prentice-Hall, 1962) pp. 95100.Google Scholar
[44]Swarup, G. A., ‘On a theorem of Johannson’, J. London Math. Soc. 18 (1978), 560562.CrossRefGoogle Scholar
[45]Thurston, W., The geometry and topology of 3-manifolds (Lecture notes, Princeton University, 1978).Google Scholar
[46]Thurston, W., ‘Three dimensional manifolds, Kleinian groups and hyperbolic geometry’, Bull. Amer. Math. Soc. 6 (1982), 357381.CrossRefGoogle Scholar
[47]Thurston, W., ‘Hyperbolic structures on 3-manifolds I: Deformations of acylindrical manifolds’, Ann. of Math. 124 (1986), 203246.Google Scholar
[48]Waldhausen, F., ‘On irreducible 3-manifolds which are sufficiently large’, Ann. of Math. 87 (1968), 5688.CrossRefGoogle Scholar
[49]Waldhausen, F., ‘The word problem in fundamental groups of sufficiently large 3-manifolds’, Ann. of Math. 88 (1968), 272280.CrossRefGoogle Scholar
[50]Waldhausen, F., ‘On the determination of some bounded 3-manifolds by their fundamental groups alone’, in: Proc. of Inter. Sym. on Topology (Yugoslavia, Beograd, 1969) pp. 331332.Google Scholar
[51]Wu, Y-Q., ‘Incompressibility of surfaces in surgered 3-manifolds’, Topology 31 (1992), 271279.CrossRefGoogle Scholar