Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T07:47:16.289Z Has data issue: false hasContentIssue false

Ideals in the Wiener algebra W+

Published online by Cambridge University Press:  09 April 2009

Raymond Mortini
Affiliation:
Mathematisches Institut I, Universität Karlsruhe, D-7500 Karlsruhe 1, Federal Republic of Germany
Michael von Renteln
Affiliation:
Mathematisches Institut I, Universität Karlsruhe, D-7500 Karlsruhe 1, Federal Republic of Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let W+ denote the Banach algebra of all absolutely convergent Taylor series in the open unit disc. We characterize the finitely generated closed and prime ideals in W+. Finally, we solve a problem of Rubel and McVoy by showing that W+ is not coherent.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1989

References

[1]Bachar, J. M., Some results on range transformations between function spaces, Contemp. Math., vol. 32, Amer. Math. Soc., Providence, R.I., 1984, pp. 3562.Google Scholar
[2]Browder, A., Introduction to function algebras (Benjamin, New York, 1969).Google Scholar
[3]Faivyševekij, V. M., ‘On the structure of ideals of some algebras of analytic functions’, Soviet Math. Dokl. 14 (1973), 10671070.Google Scholar
[4]Indlekofer, K.-H., ‘Automorphismen gewisser Funktionenalgebren II’, Acta Math. Acad. Sci. Hungar. 28 (1976), 305313.CrossRefGoogle Scholar
[5]Kahane, J.-P., Séries de Fourier absolument convergentes (Springer-Verlag, Heidelberg-New York, 1979).Google Scholar
[6]Kaplansky, I., Commutative rings (Allyn and Bacon, Boston, Mass., 1970).Google Scholar
[7]Kaufman, R., ‘Zero sets of absolutely convergent Taylor series’, Proc. Sympos. Pure Math., vol. 35, Amer. Math. Soc., Providence, R.I., 1979, pp. 439–443.CrossRefGoogle Scholar
[8]Koua, K., ‘Un exemple d' algèbre de Banach commutative radicale a unité approchée bornée sans multiplicateur non trivial’, Math. Scand. 56 (1985), 7082.CrossRefGoogle Scholar
[9]Matheson, A. L., ‘Closed ideals in rings of analytic functions satisfying a Lipschitz condition’, pp. 6772, in Banach spaces of analytic functions, ed. Baker, J., Cleaver, C. and Diestel, J. (Lecture Notes in Math., vol. 604, Springer-Verlag, 1977).CrossRefGoogle Scholar
[10]Mortini, R., ‘Finitely generated prime ideals in H and A(D)’, Math. Z. 191 (1986), 297302.CrossRefGoogle Scholar
[11]Voy, W. S. Mc and Rubel, L. A., ‘Coherence of some rings of functions’, J. Functional Analysis 21 (1976), 7687.Google Scholar
[12]Shapiro, H. S., ‘Acounterexample in harmonic analysis’, Banach Center Publ. 4 (1979), 233236.CrossRefGoogle Scholar
[13]Shirokov, N. A., ‘Divison and multiplication by inner functions in spaces of analytic functions smooth up to the boundary’, pp. 413439, in Complex analysis and spectral theory, ed. Havin, V. P. and Nikol'skii, N. K. (Lecture Notes in Math., vol. 864, Springer-Verlag, 1981).CrossRefGoogle Scholar