Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T23:42:11.002Z Has data issue: false hasContentIssue false

HYPERBOLICITY OF HOMOCLINIC CLASSES OF $C^{1}$ VECTOR FIELDS

Published online by Cambridge University Press:  21 November 2014

KEONHEE LEE
Affiliation:
Department of Mathematics, Chungnam National University, Daejeon 305-764, Korea email [email protected]
MANSEOB LEE*
Affiliation:
Department of Mathematics, Mokwon University, Daejeon 302-729, Korea email [email protected]
SEUNGHEE LEE
Affiliation:
Department of Mathematics, Chungnam National University, Daejeon 305-764, Korea email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let ${\it\gamma}$ be a hyperbolic closed orbit of a $C^{1}$ vector field $X$ on a compact $C^{\infty }$ manifold $M$ and let $H_{X}({\it\gamma})$ be the homoclinic class of $X$ containing ${\it\gamma}$. In this paper, we prove that if a $C^{1}$-persistently expansive homoclinic class $H_{X}({\it\gamma})$ has the shadowing property, then $H_{X}({\it\gamma})$ is hyperbolic.

Type
Research Article
Copyright
© 2014 Australian Mathematical Publishing Association Inc. 

References

Bonatti, C., Gan, S. and Yang, D., ‘On the hyperbolicity of homoclinic classes’, Discrete Contin. Dyn. Sys. 25 (2009), 11431162.Google Scholar
Bonatti, C., Gourmelon, N. and Vivier, T., ‘Perturbations of the derivative along periodic orbits’, Ergod. Th. & Dynam. Sys. 26 (2006), 13071337.CrossRefGoogle Scholar
Bowen, R. and Walters, P., ‘Expansive one-parameter flows’, J. Differential Equations 12 (1972), 180193.CrossRefGoogle Scholar
Doering, C. I., ‘Persistently transitive vector fields on three-dimensional manifolds’, in: Dynamical Systems and Bifurcation Theory, Pitman Research Notes, 160 (1987), 5989.Google Scholar
Gan, S. and Wen, L., ‘Nonsingular star flows satisfy Axiom A and the no-cycle condition’, Invent. Math. 164 (2006), 279315.Google Scholar
Komuro, M., ‘One-parameter flows with the pseudo orbit tracing property’, Monatsh. Math. 98 (1984), 219253.CrossRefGoogle Scholar
Lee, K., Tien, L. H. and Wen, X., ‘Robustly shadowable chain components of C 1 vector fields’, J. Korean Math. Soc. 51(1) (2014), 1753.CrossRefGoogle Scholar
Liao, S., ‘An existence theorem for periodic orbits’, Acta Sci. Natur. Univ. Pekinensis 1 (1979), 120.Google Scholar
Moriyasu, K., Sakai, K. and Sun, W., ‘ C 1-stably expansive flows’, J. Differential Equations 213 (2005), 352367.Google Scholar
Pacifico, M., Pujals, E., Sambarino, M. and Vieitez, J., ‘Robustly expansive codimension-one homoclinic classes are hyperbolic’, Ergod. Th. & Dynam. Sys. 29 (2009), 179200.CrossRefGoogle Scholar
Pacifico, M., Pujals, E. and Vieitez, J., ‘Robustly expansive homoclinic classes’, Ergod. Th. & Dynam. Sys. 25 (2005), 271300.CrossRefGoogle Scholar
Sambarino, M. and Vieitez, J. L., ‘On C 1-persistently expansive homoclinic classes’, Discrete Contin. Dyn. Sys. 14 (2006), 465481.CrossRefGoogle Scholar
Wen, X., Gan, S. and Wen, L., ‘Robustly expansive homoclinic classes with shadowing property are hyperbolic’, Preprint, 2009.Google Scholar
Yang, D. W. and Gan, S. B., ‘Expansive homoclinic classes’, Nonlinearity 22 (2009), 729733.Google Scholar