Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-18T05:33:19.099Z Has data issue: false hasContentIssue false

Homomorphisms of nonzero degree between PDn-groups

Published online by Cambridge University Press:  09 April 2009

Jonathan A. Hillman
Affiliation:
School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give algebraic proofs of some results of Wang on homomorphisms of nonzero degree between aspherical closed orientable 3-manifolds. Our arguments apply to PDn-groups which are virtually poly-Z or have a Kropholler decomposition into parts of generalized Seifert type, for all n.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2004

References

[1]Bieri, R., Homological dimension of discrete groups, Queen Mary College Mathematics Notes, Mathematics Department (Queen Mary College, London, 1976).Google Scholar
[2]Bieri, R. and Eckmann, B., ‘Relative homology and Poincaré duality for group pairs’, J. Pure Appl. Algebra 13 (1978), 277319.CrossRefGoogle Scholar
[3]Bowditch, B. H., ‘Planar groups and the Seifert conjecture’, preprint (University of Southampton, 1999).Google Scholar
[4]Dicks, W. and Dunwoody, M. J., Groups acting on graphs, Cambridge Stud. Adv. Math. 17 (Cambridge University Press, Cambridge, 1989).Google Scholar
[5]Dyer, E. and Vasquez, A. T., ‘Some properties of two-dimensional Poincaré duality groups’, in: Algebra, Topology and Category Theory (a collection of papers in honour of Samuel Eilenberg) (Academic Press, New York, 1976) pp. 4554.CrossRefGoogle Scholar
[6]Eckmann, B. and Müller, H., ‘Plane motion groups and virtual Poincaré duality of dimension two’, Invent. Math. 69 (1982), 293310.CrossRefGoogle Scholar
[7]Gonzalez-Acuña, F., Litherland, R. and Whitten, W., ‘Cohopficity of Seifert bundle groups’, Trans. Amer. Math. Soc. 341 (1994), 143155.Google Scholar
[8]Gonzalez-Acuña, F. and Whitten, W., Imbeddings of three-manifold groups, Mem. Amer. Math. Soc. 474 (American Mathematical Society, Providence, 1992).Google Scholar
[9]Hempel, J., ‘Residual finiteness for 3-manifolds’, in: Combinatorial group theory and topology (eds. Gersten, S. M. and Stallings, J. R.), Annals of Math. Stud. 111 (Princeton University Press, Princeton, 1987) pp. 379396.CrossRefGoogle Scholar
[10]Hillman, J. A., ‘Seifert fibre spaces and Poincaré duality groups’, Math. Z. 190 (1985), 365369.CrossRefGoogle Scholar
[11]Hillman, J. A., Four-manifolds, geometries and knots, Geometry and Topology Monographs 5 (Geometry and Topology Publications, Conventry, 2002).Google Scholar
[12]Kropholler, P. H., ‘Cohomological dimensions of soluble groups’, J. Pure Appl. Algebra 43 (1986), 281287.Google Scholar
[13]Kropholler, P. H., ‘An analogue of the torus decomposition theorem for certain Poincaré duality groups’, Proc. London Math. Soc. 60 (1990), 503529.CrossRefGoogle Scholar
[14]Kropholler, P. H., ‘A note on centrality in 3-manifold groups’, Math. Proc. Cambridge Philos. Soc. 107 (1990), 261266.CrossRefGoogle Scholar
[15]Magnus, W., Karrass, A. and Solitar, D., Combinatorial group theory, 2nd edition (Dover, New York, 1976).Google Scholar
[16]Neuman, W. D., ‘Commensurability and virtual fibration for graph manifolds’, Topology 36 (1997), 355378.CrossRefGoogle Scholar
[17]Neumann, W. D. and Reid, A. W., ‘Arithmetic of hyperbolic manifolds’, in: Topology'90 (Columbus, OH, 1990) (eds. Apanasov, B., Neumann, W. D., Reid, A. W. and Siebenmann, L.), Ohio State Univ. Math. Res. Inst. Publ. 1 (Walter de Gruyter, New York, 1992) pp. 273310.Google Scholar
[18]Rong, Y., ‘Degree one maps between geometric 3-manifolds’, Trans. Amer. Math. Soc. 332 (1992), 411436.Google Scholar
[19]Segal, D., Polycyclic groups, Cambridge Tracts in Mathematics 82 (Cambridge University Press, Cambridge, 1983).CrossRefGoogle Scholar
[20]Strebel, R., ‘A remark on subgroups of infinite index in Poincaré duality groups’, Comment. Math. Helv. 52 (1977), 317324.Google Scholar
[21]Wang, S., ‘The existence of maps of nonzero degree between aspherical 3-manifolds’, Math. Z. 208 (1991), 147160.CrossRefGoogle Scholar
[22]Wang, S., ‘The π1-injectivity of self-maps of nonzero degree on 3-manifolds’, Math. Ann. 297 (1993), 171189.Google Scholar
[23]Wang, S. and Wu, Y. Q., ‘Covering invariants and co-hopficity of 3-manifold groups’, Proc. London Math. Soc. 68 (1994), 203224.Google Scholar
[24]Wang, S. and Yu, F., ‘Covering degrees are determined by graph manifolds involved’, Comment. Math. Helv. 74 (1999), 238247.Google Scholar