Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T08:28:46.806Z Has data issue: false hasContentIssue false

Hilbert transform associated with finite maximal subdiagonal algebras

Published online by Cambridge University Press:  09 April 2009

Narcisse Randrianantoanina
Affiliation:
Department of Mathematics and Statistics, Miami University, Oxford, OH 45056 e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let ℳ be a von Neumann algebra with a faithful normal trace τ, and let H be a finite, maximal. subdiagonal algebra of ℳ. We prove that the Hilbert transform associated with H is a linear continuous map from L1 (ℳ, τ) into L1.∞ (ℳ, τ). This provides a non-commutative version of a classical theorem of Kolmogorov on weak type boundedness of the Hilbert transform. We also show that if a positive measurable operator b is such that b log+bL1 (ℳ, τ) then its conjugate b, relative to H belongs to L1 (ℳ, τ). These results generalize classical facts from function algebra theory to a non-commutative setting.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1998

References

[1]Arveson, W., ‘Analyticity in operator algebras’, Amer. J. Math. 89 (1967), 578642.Google Scholar
[2]Asmar, N., Berkson, E. and Gillespie, T. A., ‘Representation of groups with ordered duals and generalized analyticity’. J. Funct. Anal. 90 (1990), 206235.CrossRefGoogle Scholar
[3]Bourgain, J., ‘Bilinear forms on H and bounded bianalytic functions’, Trans. Amer Math. Soc. 286 (1984), 313337.Google Scholar
[4]Chilin, V. I. and Sukochev, F. A., ‘Symmetric spaces on semifinite von Neumann algebras’, Soviet Math. Dokl. 42 (1992), 97101.Google Scholar
[5]Davis, B., ‘Hardy spaces and rearrangements’, Trans. Amer. Math. Soc. 261 (1980), 211233.Google Scholar
[6]Devinatz, A., ‘Conjugate function theorems for Dirichlet algebras’, Rev. Un. Mat. Argentina 23 (1966/1967), 330.Google Scholar
[7]Diestel, J., Sequences and series in Banach spaces, Grad. Texts in Math. 92 (Springer Verlag, New York, 1984).CrossRefGoogle Scholar
[8]Dodds, P. G., Dodds, T. K. and de Pagter, B., ‘Non-commutative Banach function spaces’, Math. Z. 201 (1989), 583597.CrossRefGoogle Scholar
[9]Dodds, P.G., ‘Remarks on non-commutative interpolation’, Proc. Center Math. Anal. Austral. Nat. Univ. 24 (1989).Google Scholar
[10]Dodds, P. G., ‘Non-commutative Köthe duality’, Trans. Amer. Math. Soc. 339 (1993), 717750.Google Scholar
[11]Dodds, P. G., Dodds, T. K., de Pagter, B. and Sukochev, F. A., ‘Lipschitz continuity of the absolute value and Riesz projections in symmetric operator spaces’, J. Funct. Anal. 148 (1997), 2869.CrossRefGoogle Scholar
[12]Fack, T. and Kosaki, H., ‘Genaralized s-numbers of τ-measurable operators’, Pacific J. Math. 123 (1986), 269300.Google Scholar
[13]Gillepsie, T. A., Berkson, E. and Muhly, P. S., ‘Abstract spectral decomposition guarranted by Hilbert transform’, Proc. London Math. Soc. 53 (1986), 489517.Google Scholar
[14]Helson, H., Harmonic Analysis (Addison-Wesley, London, Amsterdam, Sydney and Tokyo, 1983).Google Scholar
[15]Hirschman, I. Jr, and Rochberg, R., ‘Conjugate function theory in weak*-Dirichlet algebras’, J. Funct. Anal. 16 (1974), 359371.Google Scholar
[16]Kawamura, S. and Tomiyana, J., ‘On subdiagonal algebras associated with flows in operator algebras’, J. Math. Soc. Japan 29 (1977), 7390.Google Scholar
[17]Lancien, F., ‘Generalization of Bourgain's theorem about L 1 / H 1 for weak*-Dirichlet algebras’, Houston J. Math. 20 (1994), 4761.Google Scholar
[18]Lancien, F., ‘Distribution of functions in abstract H 1’, Illinois J. Math. 39 (1995), 181186.CrossRefGoogle Scholar
[19]Lindenstrauss, J. and Tzafriri, L., Classical Banach spaces II, Modern Surveys In Mathematics 97 (Springer-Verlag, Berlin-Heidelberg-New York, 1979).Google Scholar
[20]Marsalli, M., ‘Non-commutative H 2 spaces’, Proc. Amer. Math. Soc. 125 (1997), 779784.CrossRefGoogle Scholar
[21]Marsalli, M. and West, G., ‘Non-commutative Hp spaces’, preprint.Google Scholar
[22]McAsey, M., Muhly, P. S. and Saito, K. S., ‘Non-self adjoint crossed products (invariant subspaces and maximality)’, Trans. Amer. Math. Soc. 248 (1979), 381410.Google Scholar
[23]Nelson, E., ‘Notes on non-commutative integration’, J. Funct. Anal. 15 (1974), 103116.Google Scholar
[24]Saito, K. S., ‘On non-commutative Hardy spaces associated with flows on finite von-Neumann algebras’, Tôhoku Math. J. 29 (1977), 585595.Google Scholar
[25]Saito, K. S., ‘A note on invariant subspaces for finite maximal subdiagonal algebras’, Proc. Amer. Math. Soc. 77 (1979), 348352.Google Scholar
[26]Segal, I. E., ‘A non-commutative extension of abstract integration’, Ann. of Math. 57 (1953), 401457.Google Scholar
[27]Takesaki, M., Theory of operator Algebras I (Springer-Verlag, New York, Heidelberg, Berlin, 1979).Google Scholar
[28]Xu, Q., ‘Analytic functions ith values in lattices and symmetric spaces of measurable operators’, Math. Proc. Cambridge Philos. Soc. 109 (1991), 541563.Google Scholar
[29]Yosida, K., Functional analysis (Springer-Verlag, Berlin, New-York, 1980).Google Scholar
[30]Zsido, L., ‘On spectral subspaces associated to locally compact ahelian groups of operators’, Adv. Math. 36 (1980), 213276.Google Scholar
[31]Zygmund, A., Trigonometric series, volume II (Cambridge University Press, London, 1959).Google Scholar