Article contents
HARDY AND RELLICH INEQUALITIES ON THE COMPLEMENT OF CONVEX SETS
Published online by Cambridge University Press: 21 December 2018
Abstract
We establish existence of weighted Hardy and Rellich inequalities on the spaces $L_{p}(\unicode[STIX]{x1D6FA})$, where
$\unicode[STIX]{x1D6FA}=\mathbf{R}^{d}\backslash K$ with
$K$ a closed convex subset of
$\mathbf{R}^{d}$. Let
$\unicode[STIX]{x1D6E4}=\unicode[STIX]{x2202}\unicode[STIX]{x1D6FA}$ denote the boundary of
$\unicode[STIX]{x1D6FA}$ and
$d_{\unicode[STIX]{x1D6E4}}$ the Euclidean distance to
$\unicode[STIX]{x1D6E4}$. We consider weighting functions
$c_{\unicode[STIX]{x1D6FA}}=c\circ d_{\unicode[STIX]{x1D6E4}}$ with
$c(s)=s^{\unicode[STIX]{x1D6FF}}(1+s)^{\unicode[STIX]{x1D6FF}^{\prime }-\unicode[STIX]{x1D6FF}}$ and
$\unicode[STIX]{x1D6FF},\unicode[STIX]{x1D6FF}^{\prime }\geq 0$. Then the Hardy inequalities take the form
$$\begin{eqnarray}\int _{\unicode[STIX]{x1D6FA}}c_{\unicode[STIX]{x1D6FA}}|\unicode[STIX]{x1D6FB}\unicode[STIX]{x1D711}|^{p}\geq b_{p}\int _{\unicode[STIX]{x1D6FA}}c_{\unicode[STIX]{x1D6FA}}\,d_{\unicode[STIX]{x1D6E4}}^{-p}|\unicode[STIX]{x1D711}|^{p}\end{eqnarray}$$
$$\begin{eqnarray}\int _{\unicode[STIX]{x1D6FA}}|H\unicode[STIX]{x1D711}|^{p}\geq d_{p}\int _{\unicode[STIX]{x1D6FA}}|c_{\unicode[STIX]{x1D6FA}}\,d_{\unicode[STIX]{x1D6E4}}^{-2}\unicode[STIX]{x1D711}|^{p}\end{eqnarray}$$
$H=-\text{div}(c_{\unicode[STIX]{x1D6FA}}\unicode[STIX]{x1D6FB})$. The constants
$b_{p},d_{p}$ depend on the weighting parameters
$\unicode[STIX]{x1D6FF},\unicode[STIX]{x1D6FF}^{\prime }\geq 0$ and the Hausdorff dimension of the boundary. We compute the optimal constants in a broad range of situations.
Keywords
- Type
- Research Article
- Information
- Journal of the Australian Mathematical Society , Volume 108 , Issue 1 , February 2020 , pp. 98 - 119
- Copyright
- © 2018 Australian Mathematical Publishing Association Inc.
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20200113124241749-0310:S1446788718000356:S1446788718000356_inline15.gif?pub-status=live)
- 2
- Cited by