Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T08:36:45.727Z Has data issue: false hasContentIssue false

Groups whose proper quotients are hypercentral

Published online by Cambridge University Press:  09 April 2009

L. A. Kurdachenko
Affiliation:
L. A. Kurdachenko, Algebra Department, Dnepropetrovsk University, Provulok Naukovyi 13, 320625 Ukraine e-mail: [email protected]
I. Y. Subbotin
Affiliation:
I. Y. Subbotin, Mathematics Department, National University, 9920 S.La Cienega Blvd, Inglewood, CA 90301, USA e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Groups, all proper factor-groups of which are hypercentral of finite torsion-free rank, are studied in this article.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1998

References

[1]Franciosi, S. and de Giovanni, F., ‘Soluble groups with many Chernikov quotients’, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 79 (1985), 1924.Google Scholar
[2]Franciosi, S. and de Giovanni, F., ‘Soluble groups with many nilpotent quotients’, Proc. Roy. Irish Acad. Sect. A 89 (1989), 4352.Google Scholar
[3]Fuchs, L., Infinite abelian groups, vol. 1 (Academic Press, New York, 1973).Google Scholar
[4]Fuchs, L., Infinite abelian groups, vol. 2 (Academic Press, New York, 1973).Google Scholar
[5]Groves, J. R. J., ‘Soluble groups with every proper quotients polycyclic’, Illinois J. Math. 22 (1979), 9095.Google Scholar
[6]Karbe, M. J. and Kurdachenko, L. A., ‘Just infinite modules over locally soluble groups’, Arch. Math. 51 (1988), 401411.Google Scholar
[7]Kurdachenko, L. A., ‘Locally nilpotent groups with the weak minimal condition for normal subgroups’, Siberian Math. J. 25 (1984), 589594.Google Scholar
[8]Kurosh, A. G., Theory of groups (Nauka, Moscow, 1967).Google Scholar
[9]McCarthy, D., ‘Infinite groups whose proper quotients are finite’, Comm. Pure Appl. Math. 21 (1968), 545562.Google Scholar
[10]McCarthy, D., ‘Infinite groups whose proper quotients are finite’, Comm. Pure Appl. Math. 23 (1970), 767789.Google Scholar
[11]Newmann, M. F., ‘On a class of metabelian groups’, Proc. London Math. Soc. 10 (1960), 354364.Google Scholar
[12]Newmann, M. F., ‘On a class of nilpotent groups’, Proc. London Math. Soc. 10 (1960), 365375.Google Scholar
[13]Robinson, D. J. S., Finitness conditions and generalized soluble groups, Part 1 (Springer, Berlin, 1972).Google Scholar
[14]Robinson, D. J. S., Finitness conditions and generalized soluble groups, Part 2 (Springer, Berlin, 1972).Google Scholar
[15]Robinson, D. J. S., ‘Groups whose homomorphic images have a transitive normality relation’, Trans. Amer. Math. Soc. 176 (1973), 181213.Google Scholar
[16]Robinson, D. J. S. and Wilson, J. S., ‘Soluble groups with many polycyclic quotients’, Proc. London Math. Soc. 48 (1984), 193229.Google Scholar
[17]Robinson, D. J. S. and Zhang, Z., ‘Groups, whose proper quotients have finite derived subgroups’, J. Algebra 118 (1988), 346368.Google Scholar
[18]Wilson, J. S., ‘Groups with every proper quotients finite’, Math. Proc. Cambridge Phil. Soc. 69 (1971), 373391.Google Scholar
[19]Zaitsev, D. I., ‘Hypercyclic extensions of abelian groups’, in: The groups defined by the properties of systems of subgroups (Inst. of Math., Kiev, 1979) pp. 1637.Google Scholar
[20]Zaitsev, D. I., ‘Products of abelian groups’, Algebra i Logika 19 (1980), 150172.Google Scholar
[21]Zaitsev, D. I., ‘The residual nilpotence of some metabelian groups’, Algebra i Logika 20 (1981), 638653.Google Scholar
[22]Zhang, Z. R., ‘Groups whose proper quotients are finite-by-nilpotent’, Arch. Math. 57 (1991), 521530.Google Scholar