Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-20T18:35:15.302Z Has data issue: false hasContentIssue false

Free algebras in the variety of three-valued closure algebras

Published online by Cambridge University Press:  09 April 2009

M. Abad
Affiliation:
Departmento de Matemática, Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina e-mail: [email protected], [email protected]
J. P. Díaz Varela
Affiliation:
Departmento de Matemática, Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina e-mail: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, the variety of three-valued closure algebras, that is, closure algebras with the property that the open elements from a three-valued Heyting algebra, is investigated. Particularly, the structure of the finitely generated free objects in this variety is determined.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2002

References

[1]Balbes, R. and Dwinger, P., Distributive lattices (University of Missouri Press, Columbia, 1974).Google Scholar
[2]Berman, J., ‘Free spectra of 3-element algebras,’ in: Universal Algebra and Lattice Theory, Proceedings, Puebla, 1982 (eds. Freese, R. S. and García, O. C.), Lecture Notes in Math. 1004 (Springer, New York, 1983) pp. 1016.Google Scholar
[3]Berman, J. and Blok, W. J., ‘The Fraser-Horn and Apple Properties’, Trans. Amer. Math. Soc. 302 (1987), 427465.CrossRefGoogle Scholar
[4]Blok, W. J., Varieties of interior algebras (Ph.D. Thesis, University of Amsterdam, 1976).Google Scholar
[5]Blok, W. J., ‘The free closure algebra on finitely many generators’, Indag. Math. 37 (1977), 362379.CrossRefGoogle Scholar
[6]Blok, W. J. and Dwinger, Ph., ‘Equational classes of closure algebras I’, Indag. Math. 37 (1975), 189198.CrossRefGoogle Scholar
[7]Varela, J. P. Díaz, Algebras de Clausura y su Estructura Simétrica (Ph. D. Thesis, Universidad Nacional del Sur, 1997).Google Scholar
[8]Halmos, P., ‘Algebraic logic I. Monadic Boolean algebras’, Compositio Math. 12 (1955), 217249.Google Scholar
[9]Hecht, T. and Katrinák, T., ‘Equational classes of relative Stone algebras’, Notre Dame J. Formal Logic 13 (1972), 248254.Google Scholar
[10]Jónsson, B., ‘Algebras whose congruence lattices are distributive’, Math. Scand. 5 (1967), 110121.CrossRefGoogle Scholar
[11]Lewis, C. I. and Langford, C. H., Symbolic logic (Century Co., New York, 1932).Google Scholar
[12]McKinsey, J. C. C. and Tarski, A., ‘The algebra of topology’, Ann. of Math. (2) 45 (1944), 141191.Google Scholar
[13]McKinsey, J. C. C. and Tarski, A., ‘On closed elements in closure algebras’, Ann. of Math. (2) 47 (1946), 122162.Google Scholar
[14]McKinsey, J. C. C. and Tarski, A., ‘Some theorems about the sentential calculi of Lewis and Heyting’, J. Symbolic Logic 13 (1948), 115.CrossRefGoogle Scholar
[15]Monteiro, L., ‘Une construction du réticulé distributif libre sur un ensemble ordonné’, Colloq. Math. 17 (1967), 2327.CrossRefGoogle Scholar
[16]Monteiro, L., ‘Algèbre du calcul propositionel trivalent de Heyting’, Fund. Math. 74 (1972), 99109.Google Scholar
[17]Monteiro, L., ‘Algèbre de Boole monadiques libres’, Algebra Universalis 8 (1978), 374380.Google Scholar