Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-15T23:26:58.182Z Has data issue: false hasContentIssue false

FREE ADEQUATE SEMIGROUPS

Published online by Cambridge University Press:  19 March 2012

MARK KAMBITES*
Affiliation:
School of Mathematics, University of Manchester, Manchester M13 9PL, UK (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give an explicit description of the free objects in the quasivariety of adequate semigroups, as sets of labelled directed trees under a natural combinatorial multiplication. The morphisms of the free adequate semigroup onto the free ample semigroup and into the free inverse semigroup are realised by a combinatorial ‘folding’ operation which transforms our trees into Munn trees. We use these results to show that free adequate semigroups and monoids are 𝒥-trivial and never finitely generated as semigroups, and that those which are finitely generated as (2,1,1)-algebras have decidable word problem.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2012

References

[1]Branco, M. J. J., Gomes, G. M. S. and Gould, V. A. R., ‘Left adequate and left Ehresmann monoids’, Internat. J. Algebra Comput. 21(7) (2011), 12591284.CrossRefGoogle Scholar
[2]Cockett, J. R. B. and Guo, X., ‘Stable meet semilattice fibrations and free restriction categories’, Theory Appl. Categ. 16(15) (2006), 307341 (electronic).Google Scholar
[3]Cockett, J. R. B. and Lack, S., ‘Restriction categories I. Categories of partial maps’, Theoret. Comput. Sci. 270(1–2) (2002), 223259.CrossRefGoogle Scholar
[4]Cohn, P. M., Universal Algebra, 2nd edn, Mathematics and its Applications, Vol. 6 (D. Reidel, Dordrecht, 1981).CrossRefGoogle Scholar
[5]Foniok, J., Homomorphisms and structural properties of relational system. PhD Thesis, Faculty of Mathematics and Physics, Charles University, Prague, 2007.Google Scholar
[6]Fountain, J. B., ‘Adequate semigroups’, Proc. Edinb. Math. Soc. (2) 22(2) (1979), 113125.Google Scholar
[7]Fountain, J. B., ‘Abundant semigroups’, Proc. Lond. Math. Soc. 44 (1982), 103129.CrossRefGoogle Scholar
[8]Fountain, J. B., ‘Free right h-adequate semigroups’, in: Semigroups, Theory and Applications (Oberwolfach, 1986), Lecture Notes in Mathematics, Vol. 1320 (Springer, Berlin, 1988), pp. 97120.Google Scholar
[9]Fountain, J. B., ‘Free right type A semigroups’, Glasgow Math. J. 33(2) (1991), 135148.Google Scholar
[10]Fountain, J. B., Gomes, G. M. S. and Gould, V. A. R., ‘The free ample monoid’, Int. J. Algebra Comput. 19(4) (2009), 527554.CrossRefGoogle Scholar
[11]Gomes, G. M. S. and Gould, V. A. R., ‘Left adequate and left Ehresmann monoids II’, J. Algebra 348(1) (2011), 171195.CrossRefGoogle Scholar
[12]Gould, V. A. R., ‘(Weakly) left E-ample semigroups’. Notes available online at www-users.york.ac.uk/∼varg1/.Google Scholar
[13]Gutiérrez, C., ‘On free inverse semigroups’, Semigroup Forum 61(1) (2000), 154158.CrossRefGoogle Scholar
[14]Harary, F. and Plummer, M. D., ‘On the core of a graph’, Proc. Lond. Math. Soc. (3) 17 (1967), 305314.CrossRefGoogle Scholar
[15]Hell, P. and Nešetřil, J., ‘The core of a graph’, Discrete Math. 109(1–3) (1992), 117126.CrossRefGoogle Scholar
[16]Kambites, M., ‘Retracts of trees and free left adequate semigroups’, Proc. Edinb. Math. Soc. 54 (2011), 731747.Google Scholar
[17]Lawson, M. V., ‘Semigroups and ordered categories I: The reduced case’, J. Algebra 141 (1991), 422462.Google Scholar
[18]Munn, W. D., ‘Free inverse semigroups’, Proc. Lond. Math. Soc. (3) 29 (1974), 385404.Google Scholar
[19]Petrich, M., ‘Free inverse semigroups’, Colloq. Math. 59(2) (1990), 213221.Google Scholar
[20]Poliakova, O. and Schein, B. M., ‘A new construction for free inverse semigroups’, J. Algebra 288(1) (2005), 2058.Google Scholar
[21]Reynolds, M. A., ‘A new construction for free inverse semigroups’, Semigroup Forum 30(3) (1984), 291296.Google Scholar
[22]Scheiblich, H. E., ‘Free inverse semigroups’, Semigroup Forum 4 (1972), 351359.CrossRefGoogle Scholar
[23]Stallings, J., ‘Topology of a finite graph’, Invent. Math. 71 (1983), 551565.Google Scholar