Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T08:49:40.092Z Has data issue: false hasContentIssue false

Franel integrals of order four

Published online by Cambridge University Press:  09 April 2009

Richard J. McIntosh
Affiliation:
Department of Mathematics and StatisticsUniversity of ReginaRegina, SaskatchewanCanadaS4S 0A2 e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let ((x)) = x −⌊x⌋−1/2 be the swatooth function. If a, b, c and e are positive integeral, then the integral or ((ax)) ((bx)) ((cx)) ((ex)) over the unit interval involves Apolstol's generalized Dedekind sums. By expressing this integral as a lattice-point sum we obtain an elementary method for its evaluation. We also give an elementary proof of the reciprocity law for the third generalized Dedekind sum.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1996

References

[1]Abramowitz, M. and Stegun, I. E., Handbook of mathematical functions, National Bureau of Standards Applied Mathematics Series 55 (National Bureau of Standards, Washington D.C., 1972).Google Scholar
[2]Apostol, T. M., ‘Generalized Dedekind sums and the transformation formulae of certain Lambert series’, Duke. Math. J. 17 (1950), 147157.CrossRefGoogle Scholar
[3]Apostol, T. M., ‘Theorems on generalized Dedekind sums’, Pacific J. Math. 2 (1952), 19.Google Scholar
[4]Berndt, B. C., ‘Reciprocity theorems for Dedekind sums and generalizations’, Adv. Math. 23 (1977), 285316.CrossRefGoogle Scholar
[5]Franel, J., ‘Les suites de Farey et le problème des nombres premiers’, Göttingen Nachrichten (1924), 198201.Google Scholar
[6]Holland, A. S. B., Complex function theory (Elsevier, New York, 1980).Google Scholar
[7]Landau, E., Vorlesungen über Zahlentheorie, zweiter Band (Chelsea, New York, 1947).Google Scholar
[8]Montgomery, P., private correspondence, 1991.Google Scholar
[9]Rademacher, H. and Grosswald, E., Dedekind sums, Carus Math. Monographs 16 (Math. Assoc. Amer., Washington D.C., 1972).Google Scholar