No CrossRef data available.
Article contents
Fitting classes and lattice formations II
Part of:
Representation theory of groups
Published online by Cambridge University Press: 09 April 2009
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Given a lattice formation F of full characteristic, an F - Fitting class is a Fitting class with stronger closure properties involving F -subnormal subgroups. The main aim of this paper is to prove that the associated injectors possess a good behaviour with respect to F -subnormal subgroups.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 2004
References
[2]Arroyo-Jordá, M. and Pérez-Ramos, M. D., ‘Fitting classes and lattice formations I’, J. Aust. Math. Soc. 76 (2004), 93–108.CrossRefGoogle Scholar
[3]Arroyo-Jordá, M. ‘On the lattice of F-Dnormal subgroups in finite soluble groups’, J. Algebra 242 (2001), 198–212.CrossRefGoogle Scholar
[4]Ballester-Bolinches, A., Doerk, K. and Pérez-Ramos, M. D., ‘On the lattice of F-subnormal subgroups’, J. Algebra 148 (1992), 42–52.CrossRefGoogle Scholar
[5]Ballester-Bolinches, A., ‘On F-normal subgroups of finite soluble groups’, J. Algebra 171 (1995), 189–203.CrossRefGoogle Scholar
[6]Ballester-Bolinches, A. and Pérez-Ramos, M. D., ‘F-subnormal closure’, J. Algebra 138 (1991), 91–98.CrossRefGoogle Scholar
[7]Carter, R. and Hawkes, T., ‘The F-normalizers of a finite soluble group’, J. Algebra 5 (1967), 175–202.CrossRefGoogle Scholar
[8]Doerk, K. and Hawkes, T., Finite soluble groups (Walter De Gruyter, Berlin, 1992).CrossRefGoogle Scholar
[9]Feldman, A. D., ‘F-bases and subgroup embeddings in finite solvable groups’, Arch. Math. 47 (1986), 481–492.CrossRefGoogle Scholar
[10]Fischer, B., Gaschütz, W. and Hartley, B., ‘Injektoren endlicher auflösbarer Gruppen’, Math. Z. 102 (1967), 337–339.CrossRefGoogle Scholar
[11]Graddon, C. J., ‘F-reducers in finite soluble groups’, J. Algebra 18 (1971), 574–587.CrossRefGoogle Scholar
[12]Müller, N., F-Pronormale Untergruppen von endlich auflösbarer Gruppen (Diplomarbeit, Johannes Gutenberg-Universität Mainz, 1985).Google Scholar