Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T05:45:52.107Z Has data issue: false hasContentIssue false

THE FATOU COMPLETION OF A FRÉCHET FUNCTION SPACE AND APPLICATIONS

Published online by Cambridge University Press:  08 December 2009

R. DEL CAMPO
Affiliation:
Dpto. Matemática Aplicada I, EUITA, Ctra. de Utrera Km. 1, E–41013 Sevilla, Spain (email: [email protected])
W. J. RICKER*
Affiliation:
Math.-Geogr. Fakultät, Katholische Universität Eichstätt-Ingolstadt, D–85072 Eichstätt, Germany (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Given a metrizable locally convex-solid Riesz space of measurable functions we provide a procedure to construct a minimal Fréchet (function) lattice containing it, called its Fatou completion. As an application, we obtain that the Fatou completion of the space L1(ν) of integrable functions with respect to a Fréchet-space-valued measure ν is the space L1w(ν) of scalarly ν-integrable functions. Further consequences are also given.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2009

References

[1]Albanese, A. A., ‘Primary products of Banach spaces’, Arch. Math. 66 (1996), 397405.CrossRefGoogle Scholar
[2]Albanese, A. A., ‘On subspaces of the spaces L ploc and of their strong duals’, Math. Nachr. 197 (1999), 518.CrossRefGoogle Scholar
[3]Aliprantis, C. D. and Burkinshaw, O., Locally Solid Riesz Spaces (Academic Press, New York, 1978).Google Scholar
[4]Bonet, J., Okada, S. and Ricker, W. J., ‘The canonical spectral measure and Köthe function spaces’, Quaest. Math. 29 (2006), 91116.CrossRefGoogle Scholar
[5]Castillo, J. M. F., Díaz, J.C. and Motos, J., ‘On the Fréchet space L p’, Manuscripta Math. 96 (1988), 219230.CrossRefGoogle Scholar
[6]Curbera, G. P., ‘Operators into L 1 of a vector measure and applications to Banach lattices’, Math. Ann. 293 (1992), 317330.CrossRefGoogle Scholar
[7]Curbera, G. P. and Ricker, W. J., ‘Banach lattices with the Fatou property and optimal domains of kernel operators’, Indag. Math. (N.S.) 17 (2006), 187204.CrossRefGoogle Scholar
[8]del Campo, R. and Ricker, W. J., ‘The space of scalarly integrable functions for a Fréchet space-valued measure’, J. Math. Anal. Appl. 354 (2009), 641647.CrossRefGoogle Scholar
[9]Drewnowski, L. and Labuda, I., ‘Copies of c 0 and in topological Riesz spaces’, Trans. Amer. Math. Soc. 350 (1998), 35553570.CrossRefGoogle Scholar
[10]Fremlin, D. H., Topological Riesz Spaces and Measure Theory (Cambridge University Press, Cambridge, 1974).CrossRefGoogle Scholar
[11]Kalton, N. J., ‘Exhaustive operators and vector measures’, Proc. Edinb. Math. Soc. 19 (1974), 291300.CrossRefGoogle Scholar
[12]Kluvánek, I. and Knowles, G., Vector Measures and Control Systems (North-Holland, Amsterdam, 1976).Google Scholar
[13]Lewis, D. R., ‘On integrability and summability in vector spaces’, Illinois J. Math. 16 (1972), 294307.CrossRefGoogle Scholar
[14]Luxemburg, W. A. J. and Zaanen, A. C., Riesz Spaces I (North-Holland, Amsterdam, 1971).Google Scholar
[15]Meise, R. G. and Vogt, D., Introduction to Functional Analysis (Clarendon Press, Oxford, 1997).CrossRefGoogle Scholar
[16]Metafune, G. and Moscatelli, V. B., ‘On the space p+=⋂ q>p q’, Math. Nachr. 147 (1990), 712.CrossRefGoogle Scholar
[17]Okada, S. and Ricker, W. J., ‘Vector measures and integration in non-complete spaces’, Arch. Math. 63 (1994), 344353.CrossRefGoogle Scholar
[18]Reiher, K., ‘Weighted inductive and projective limits of normed Köthe function spaces’, Results Math. 13 (1988), 147161.CrossRefGoogle Scholar
[19]Ronglu, L. and Qingying, B., ‘Locally convex spaces containing no copy of c 0’, J. Math. Anal. Appl. 172 (1993), 205211.Google Scholar
[20]Stefansson, G. F., ‘L 1 of a vector measure’, Le Matematiche 48 (1993), 219234.Google Scholar
[21]Wnuk, W., ‘Locally solid Riesz spaces not containing c 0’, Bull. Pol. Acad. Sci. Math. 36 (1988), 5156.Google Scholar
[22]Zaanen, A. C., Integration, 2nd rev. edn (North-Holland, Interscience, Amsterdam, New York, 1967).Google Scholar
[23]Zaanen, A. C., Riesz Spaces II (North-Holland, Amsterdam, 1983).Google Scholar