Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-01T01:31:21.245Z Has data issue: false hasContentIssue false

Existence of finite groups with classical commutator subgroup

Published online by Cambridge University Press:  09 April 2009

Michael D. Miller
Affiliation:
Department of Mathematics University of California, Los Angeles California 90024, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Given a group G, we may ask whether it is the commutator subgroup of some group G. For example, every abelian group G is the commutator subgroup of a semi-direct product of G x G by a cyclic group of order 2. On the other hand, no symmetric group Sn(n>2) is the commutator subgroup of any group G. In this paper we examine the classical linear groups over finite fields K of characteristic not equal to 2, and determine which can be commutator subgroups of other groups. In particular, we settle the question for all normal subgroups of the general linear groups GLn(K), the unitary groups Un(K) (n≠4), and the orthogonal groups On(K) (n≧7).

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1978

References

Artin, E. (1957), Geometric Algebra, Interscience Tracts in Pure and Applied Mathematics, 3 (Interscience, New York, London).Google Scholar
Dieudonné, J. (1951), On the Automorphisms of the Classical Groups, Memoirs Amer. Math. Soc. 2 (Amer. Math. Soc., New York).Google Scholar
Dieudonné, J. (1958), Sur les Groupes Classiques, Actualités scientifiques et industrielles, 1040 (Publications de l'Institut de Mathématique de l'Université de Strasbourg, VI. Hermann, Paris).Google Scholar
Dieudonné, J. (1971), La Géométrie des Groupes Classiques, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, 5 (Springer-Verlag, Berlin, Heidelberg, New York).Google Scholar
Lipschitz, R. (1959), “Correspondence”, Ann. of Math. (2) 69, 247251.CrossRefGoogle Scholar
O'Meara, O. T. (1968), “The automorphisms of the orthogonal groups Ω(Vn) over fields”, Amer. J. Math. 90, 12601306.CrossRefGoogle Scholar
Veldkamp, F. D. (1965), Classical Groups (Yale Notes, New Haven, Conn.).Google Scholar