Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-20T16:12:42.068Z Has data issue: false hasContentIssue false

ENDPOINT ESTIMATES FOR MULTILINEAR FRACTIONAL INTEGRALS

Published online by Cambridge University Press:  01 June 2008

LIN TANG*
Affiliation:
LMAM, School of Mathematics and Sciences, Peking University, Beijing, 100871, China (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the boundedness for multilinear fractional integrals on spaces as Morrey spaces and Lipschitz spaces.

Type
Research Article
Copyright
Copyright © 2008 Australian Mathematical Society

References

[1]Chiarenza, F. and Frasca, M., ‘Morrey spaces and Hardy–Littlewood maximal function’, Rend. Mat. Appl. 7(3–4) (1987), 273279.Google Scholar
[2]Grafakos, L., ‘On multilinear fractional integrals’, Studia Math. 102 (1992), 4956.CrossRefGoogle Scholar
[3]Grafakos, L. and Kalton, N., ‘Some remarks on multilinear maps and interpolation’, Math. Ann. 319 (2001), 151180.CrossRefGoogle Scholar
[4]Grafakos, L. and Torres, R., ‘Multilinear Calderón–Zygmund theory’, Adv. Math. 165 (2002), 124164.CrossRefGoogle Scholar
[5]Kozono, H. and Yamazaki, M., ‘Semilinear heat equations and the Navier–Stokes equation with distributions in new function spaces as initial data’, Comm. Partial Differential Equations 19 (1994), 9591014.CrossRefGoogle Scholar
[6]Kenig, C. and Stein, E., ‘Multilinear estimates and fractional integration’, Math. Reseach. Letter 6 (1999), 115.CrossRefGoogle Scholar
[7]Peetre, J., ‘On the theory of L p,λ spaces’, J. Funct. Anal. 4 (1969), 7187.CrossRefGoogle Scholar
[8]Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals (Princeton University Press, Princeton, NJ, 1993).Google Scholar
[9]Strichartz, R. S., ‘A note on Trudinger’s extension of Sobolev’s inequalities’, Indiana Univ. Math. J. 21 (1972), 841842.CrossRefGoogle Scholar