Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T03:15:32.725Z Has data issue: false hasContentIssue false

Endoprimal abelian groups

Published online by Cambridge University Press:  09 April 2009

Kalle Kaarli
Affiliation:
Department of Mathematics University of TartuEE-50090 Tartu Estonia e-mail:[email protected]
László Márki
Affiliation:
Mathematical Institute Hungarian Academy of SciencesH-1364 Budapest, Pf. 127 Hungary e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A group A is said to be endoprimal if its term functions are precisely the functions which permute with all endomorphisms of A. In this paper we describe endoprimal groups in the following three classes of abelian groups: torsion groups, torsionfree groups of rank at most 2, direct sums of a torsion group and a torsionfree group of rank 1.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1999

References

[1]Baer, R., ‘The subgroup of the elements of finite order of an abelian group’, Ann. of Math. 37 (1936), 766781.CrossRefGoogle Scholar
[2]Davey, B. A., ‘Duality for equational classes of Brouwerian and Heyting algebras’, Trans. Amer. Math. Soc. 221 (1976), 119146.CrossRefGoogle Scholar
[3]Davey, B. A., ‘Dualisability in general and endodualisability in particular’, in: Logic and algebra, Lecture Notes in Pure and Appl. Math. 180 (Marcel Dekker, New York, 1996), pp. 437455.Google Scholar
[4]Davey, B. A. and Pitkethly, J. G., ‘Endoprimal algebras’, Algebra Universalis 38 (1997), 266288.CrossRefGoogle Scholar
[5]Davey, B. A. and Werner, H., ‘Piggyback-Dualitäten’, Bull. Austral. Math. Soc. 32 (1985), 132.CrossRefGoogle Scholar
[6]Fomin, S. V., ‘Über periodische Untergruppen der unendlichen abelschen Gruppen’, Mat. Sb. 2 (1937), 10071009.Google Scholar
[7]Fuchs, L., Infinite abelian groups, I–II (Academic Press, New York, 1970, 1973).Google Scholar
[8]Kaarli, K., ‘Affine complete Abelian groups’, Math. Nachr. 107 (1982), 235239.CrossRefGoogle Scholar
[9]Márki, L. and Pöschel, R., ‘Endoprimal distributive lattices’, Algebra Universalis 30 (1993), 272274.CrossRefGoogle Scholar