Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T02:04:20.394Z Has data issue: false hasContentIssue false

Embeddings of ℓp into Non-commutative Spaces

Published online by Cambridge University Press:  09 April 2009

Narcisse Randrianantoanina
Affiliation:
Department of Mathematics and Statistics Miami UniversityOxford, Ohio 45056 USA e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let ℳ be a semi-finite von Neumann algebra equipped with a faithful normal trace τ. We prove a Kadec-Pelczyński type dichotomy principle for subspaces of symmetric space of measurable operators of Rademacher type 2. We study subspace structures of non-commutative Lorentz spaces Lp, q, (ℳ, τ), extending some results of Carothers and Dilworth to the non-commutative settings. In particular, we show that, under natural conditions on indices, ℓp cannot be embedded into Lp, q (ℳ, τ). As applications, we prove that for 0 < p < ∞ with p ≠ 2, ℓp cannot be strongly embedded into Lp(ℳ, τ). This provides a non-commutative extension of a result of Kalton for 0 < p < 1 and a result of Rosenthal for 1 ≦ p < 2 on Lp [0, 1].

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2003

References

[1]Bennett, C. and Sharpley, R., Interpolation of operators (Academic Press, Boston, MA, 1988).Google Scholar
[2]Carothers, N. L. and Dilworth, S. J., ‘Geometry of Lorentz spaces via interpolation’, in: Longhorn Notes (Texas Functional Analysis Seminar) (Univ. Texas, Austin, TX, 1986) pp. 107133.Google Scholar
[3]Carothers, N. L. and Dilworth, S. J., ‘Subspaces of Lp, q’, Proc. Amer Math. Soc. 104 (1988), 537545.Google Scholar
[4]Chilin, V. I. and Sukochev, F. A., ‘Symmetric spaces over semifinite von Neumann algebras’, Dokl. Akad. Nauk SSSR 313 (1990), 811815.Google Scholar
[5]Diestel, J., Sequences and series in Banach spaces, Graduate Text in Math. 92 (Springer, New York, 1984).CrossRefGoogle Scholar
[6]Dodds, P. G., Dodds, T. K. and de Pagter, B., ‘Noncommutative Banach function spaces’, Math. Z. 201 (1989), 583597.CrossRefGoogle Scholar
[7]Dodds, P. G., Dodds, T. K. and de Pagter, B., ‘Noncommutative Köthe duality’, Trans. Amer. Math. Soc. 339 (1993), 717750.Google Scholar
[8]Dodds, P. G., Dodds, T. K., Dowling, P. N., Lennard, C. J. and Sukochev, F. A., ‘A uniform KadecKlee property for symmetric operator spaces’, Math. Proc. Cambridge Philos. Soc. 118 (1995), 487502.CrossRefGoogle Scholar
[9]Fack, T., ‘Type and cotype inequalities for noncommutative Lp-spaces’, J. Operator Theory 17 (1987), 255279.Google Scholar
[10]Fack, T. and Kosaki, H., ‘Generalized s-numbers of τ-measurable operators’, Pacific J. Math. 123 (1986), 269300.CrossRefGoogle Scholar
[11]Haagerup, U., Rosenthal, H. P. and Sukochev, F. A., ‘Banach embedding properties of non- commutative Lp-spaces’, preprint.Google Scholar
[12]Kadec, M. I. and Pelczyński, A., ‘Bases, lacunary sequences and complemented subspaces in the spaces Lp’, Studia Math. 21 (1961/1962), 161176.CrossRefGoogle Scholar
[13]Kadison, R. V. and Ringrose, J. R., Fundamentals of the theory of operator algebras. Vol. II Advanced theory (Academic Press, Orlando, FL, 1986).Google Scholar
[14]Kalton, N. J., ‘Linear operators on Lp for 0 < p < 1’, Trans. Amer Math. Soc. 259 (1980), 319355.Google Scholar
[15]Levy, M., ‘L'espace d'interpolation réel (A0, A1)θp contient Lp’, C. R. Acad. Sci. Parïs Sér. A-B 289 (1979), A675–A677.Google Scholar
[16]Lindenstrauss, J. and Tzafriri, L., Classical Banach spaces. II Function spaces (Springer, Berlin, 1979).CrossRefGoogle Scholar
[17]Lust-Piquard, F., ‘Inégalités de Khintchine dans Cp, (1 < p < ∞)’, C. R. Acad. Sci. Paris Sér I Math. 303 (1986), 289292.Google Scholar
[18]Lust-Piquard, F. and Pisier, G., ‘Noncommutative Khintchine and Paley inequalities’, Ark. Mat. 29 (1991), 241260.CrossRefGoogle Scholar
[19]Nelson, E., ‘Notes on non-commutative integration’, J. Funct. Anal. 15 (1974), 103116.CrossRefGoogle Scholar
[20]Pisier, G. and Xu, Q., ‘Non-commutative Lp-spaces’, in: Handbook of the Geometry of Banach spaces, Vol. 2 (eds. Johnson, W. B. and Lindenstraus, J.) (Elsveier, Amsterdam, to appear).Google Scholar
[21]Randrianantoanina, N., ‘Sequences in non-commutative Lp-spaces’, J. Operator Theory 48 (2002), 255272.Google Scholar
[22]Raynaud, Y. and Xu, Q., ‘On the structure of subspaces of non-commutative Lp-spaces’, C. R. Acad. Sci. Paris Sér I Math. 333 (2001), 213218.CrossRefGoogle Scholar
[23]Rosenthal, H. P., ‘On subspaces of Lp’, Ann. of Math. (2) 97 (1973), 344373.CrossRefGoogle Scholar
[24]Segal, I. E., ‘A non-commutative extension of abstract integration’, Ann. of Math. (2) 57 (1953), 401457.CrossRefGoogle Scholar
[25]Sukochev, F. A., ‘Non-isomorphism of Lp-spaces associated with finite and infinite von Neumann algebras’, Proc. Amer Math. Soc. 124 (1996), 15171527.CrossRefGoogle Scholar
[26]Takesaki, M., Theory of operator algebras. I (Springer, New York, 1979).CrossRefGoogle Scholar
[27]Tomczak-Jaegermann, N., ‘The moduli of smoothness and convexity and the Rademacher averages of trace classes Sp (1 ≦ p < ∞)’, Studia Math. 50 (1974), 163182.Google Scholar
[28]Xu, Q., ‘Analytic functions with values in lattices and symmetric spaces of measurable operators’, Math. Proc. Cambridge Philos. Soc. 109 (1991), 541563.CrossRefGoogle Scholar