Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T22:58:21.094Z Has data issue: false hasContentIssue false

Duality properties of spaces of non-Archimedean valued functions

Published online by Cambridge University Press:  09 April 2009

W. Govaerts
Affiliation:
Seminarie voor hogere analyse, Galglaan 2, B-9000 Gent, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let C(X, F) be the space of all continuous functions from the ultraregular compact Hausdorff space X into the separated locally K-convex space F; K is a complete, but not necessarily spherically complete, non-Archimedean valued field and C(X, F) is provided with the topology of uniform convergence on X We prove that C(X, F) is K-barrelled (respectively K-quasibarrelled) if and only if F is K-barrelled (respectively K-quasibarrelled) This is not true in the case of R or C-valued functions. No complete characterization of the K-bornological space C(X, F) is obtained, but our results are, nevertheless, slightly better than the Archimedean ones. Finally, we introduce a notion of K-ultrabornological spaces for K non-spherically complete and use it to study K-ultrabornological spaces C(X, F).

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1987

References

[1]Defant, A. and Govaerts, W., ‘Tensor products and spaces of vector-valued continuous functions’, to appear in Manuscripta Mathematica.Google Scholar
[2]Defant, A. and Govaerts, W., ‘Bornological and ultrabornological spaces of type C(X, F) and EεF’, to appear in Mathematische Annalen.Google Scholar
[3]Marquina, A. and Serna, J. M. Sanz, ‘Barrelledness conditions on c 0(E)’, Archiv der Mathematik 31 (1978), 589596.CrossRefGoogle Scholar
[4]Mendoza, J., ‘Necessary and sufficient conditions for C(X, E) to be barrelled or infrabarrelled’, Simon Stevin 57 (1983), 103123.Google Scholar
[5]Mendoza, J., ‘A Barrelledness criterion for c 0(E)’, Archiv der Mathematik 40 (1983), 156158.CrossRefGoogle Scholar
[6]Van Der Put, M. et Van Tiel, J., ‘Espaces nucléaires non Archimédiens’, Indag. Math. 29 (1967), 556561.Google Scholar
[7]Van Rooij, A. C. M., Non-Archimedean functional analysis (Marcel Dekker, New York, 1978).Google Scholar
[8]Van Tiel, J., ‘Espaces localement K-convexes I-III’, Indag. Math. 27 (1965), 249258; 259–272; 273–289.CrossRefGoogle Scholar
[9]Schmets, J., Espaces de fonctions continues (Lecture Notes in Mathematics, Vol. 519, Springer-Verlag, Berlin, 1976).CrossRefGoogle Scholar
[10]Schmets, J., ‘Examples of barrelled C(X; E) spaces’ (Machado, S. (ed.), Functional Analysis, Holomorphy, and Approximation Theory. Proceedings, Lecture Notes in Mathematics, Vol. 843, Springer-Verlag, Berlin, 1981), pp. 561571.CrossRefGoogle Scholar
[11]Schmets, J., ‘Spaces of vector-valued continuous functions (Lecture Notes in Mathematics, Vol. 1003, Springer-Verlag, Berlin, 1983).CrossRefGoogle Scholar