Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T10:38:28.179Z Has data issue: false hasContentIssue false

Duality for distributive bisemilattices

Published online by Cambridge University Press:  09 April 2009

Gerhard Gierz
Affiliation:
Department of Mathematics University of California Riverside, California 92521, U.S.A.
Anna Romanowska
Affiliation:
Institute of Mathematics Warsaw Technical University00661 Warsaw, Poland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We establish a duality between distributive bisemilattices and certain compact left normal bands. The main technique in the proof utilizes the idea of Plonka sums.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1991

References

[1]Balbes, R., ‘A representation theorem for distributive quasi-lattices’, Find. Math. 68 (1970), 207214.CrossRefGoogle Scholar
[2]Birkhoff, G., Lattice theory, Colloquium Publications, vol. 25, Amer. Math. Soc., Providence, R.I., 3rd ed., 1967.Google Scholar
[3]Davey, B. A., ‘Topological duality for prevarieties of universal algebras’, in Studies in Foundations and Combinatorics, Rota, G., ed., Academic Press, New York, London, 1978, 6198.Google Scholar
[4]Fuchs, L., Partially ordered algebraic systems, Pergamon Press, 1963.Google Scholar
[5]Gerhardt, J., ‘Subdirectly irreducible idempotent semigroups’, Pacific J. Math. 39 (1971), 669676.CrossRefGoogle Scholar
[6]Halkowska, K., ‘O pewnej równosciowo definiowalnej klasie algebr’, Zeszyty Naukowe W.S.P., Opole, Ser. Matematyka 19 (1976), 127136.Google Scholar
[7]Hofmann, K. and Keimel, K., A general character theory for partially ordered sets and lattices, vol. 122, Mem. Amer. Math. Soc., 1972.Google Scholar
[8]Hofmann, K., Mislov, M., and Stralka, A., The Pontrjagin duality for semilattices, Lecture Notes in Mathematics, vol. 396, Springer-Verlag, Berlin, Heidelberg, New York, 1974.Google Scholar
[9]Kalman, J., ‘Subdirect decomposition of distributive quasilattices’, Fund. Math. 71 (1971), 161163.Google Scholar
[10]Kimura, W. and Yamada, M., ‘Note on idempotent semigroups II’, Proc. Japan. Acad. 34 (1958), 110112.Google Scholar
[11]Lakser, H., Padmanabhan, R., and Platt, C., ‘Subdirect decompositions of Plonka sums’, Duke Math. J. 39 (1972), 485488.Google Scholar
[12]Lane, S. Mac, Categories for the Working Mathematician, Graduate Texts in Mathematics, vol. 5, Springer-Verlag, 1971.Google Scholar
[13]Nachbin, L., Topology and Order, Van Nostrand, 1965.Google Scholar
[14]Plonka, J., ‘On a method of construction of abstract algebras’, Fund. Math. 61 (1967), 183189.CrossRefGoogle Scholar
[15]Plonka, J., ‘On distributive quasilattices’, Fund. Math. 60 (1967), 191200.CrossRefGoogle Scholar
[16]Plonka, J., ‘Some remarks on sums of direct systems of algebras’, Fund. Math. 62 (1968), 301308.CrossRefGoogle Scholar
[17]Padmanabhan, R., ‘Regular identities in lattices’, Trans. Amer. Math. Soc. 158 (1971), 179189.CrossRefGoogle Scholar
[18]Priestley, H., ‘Representation of distributive lattices by means of ordered Stone spaces’, Bull. London Math. Soc. 2 (1970), 186190.Google Scholar
[19]Priestley, H., ‘Ordered topological spaces and the representation of distributive lattices’, Proc. London Math. Soc. 3 (1972), 506530.Google Scholar
[20]Romanowska, A., ‘Constructing and reconstructing of algebras’, Demonstratio Math. 18 (1985), 209230.Google Scholar
[21]Romanowska, A. and Smith, J., ‘Distributive lattices, generalizations and related non-associative structures’, Houston J. Math. 11 (1985), 367386.Google Scholar
[22]Romanowska, A. and Smith, J., Modal Theory-An Algebraic Approach to Order, Geometry and Convexity, Heldermann-Verlag, Berlin, 1985.Google Scholar
[23]Romanowska, A. and Smith, J., ‘On the structure of semilattice sums’, preprint, 1987.Google Scholar
[24]Stone, M., ‘Topological representations for Boolean algebras’, Trans. Amer. Math. Soc. 40 (1936), 37111.Google Scholar
[25]Stone, M., ‘Topological representations for distributive lattices and brouwerian logics’, Časopis Pěst. Mat. 67 (1937), 125.Google Scholar